视觉语言模型易受攻击?西安交大等提出基于扩散模型的对抗样本生成新方法
视觉语言模型易受攻击?西安交大等提出基于扩散模型的对抗样本生成新方法对抗攻击,特别是基于迁移的有目标攻击,可以用于评估大型视觉语言模型(VLMs)的对抗鲁棒性,从而在部署前更全面地检查潜在的安全漏洞。然而,现有的基于迁移的对抗攻击由于需要大量迭代和复杂的方法结构,导致成本较高
来自主题: AI技术研报
8005 点击 2024-12-28 14:01
对抗攻击,特别是基于迁移的有目标攻击,可以用于评估大型视觉语言模型(VLMs)的对抗鲁棒性,从而在部署前更全面地检查潜在的安全漏洞。然而,现有的基于迁移的对抗攻击由于需要大量迭代和复杂的方法结构,导致成本较高
随着基础模型(如VLMs,例如Minimax、Qwen-V)和尖端图像生成技术(如Flux 1.1)的快速发展,我们正进入一个创造性可能性的新纪元。结合像T5这样的模型以增强对潜在空间中文本提示的理解,这些工具使得生产广告级别的关键视觉(KVs)成为可能,且具有显著的真实感。
一个5月份完成训练的大模型,无法对《黑神话·悟空》游戏内容相关问题给出准确回答。
在游戏和机器人研究领域,让智能体在开放世界环境中实现有效的交互,一直是令人兴奋却困难重重的挑战。
本文提出了一种名为MedUnA的方法,旨在解决医疗图像分类中因缺乏标注数据而导致的监督学习挑战。MedUnA利用视觉-语言模型(VLMs)中的视觉与文本对齐特性,通过无监督学习来适应医疗图像分类任务。
随着人工智能(AI)技术的迅猛发展,特别是大语言模型(LLMs)如 GPT-4 和视觉语言模型(VLMs)如 CLIP 和 DALL-E,这些模型在多个技术领域取得了显著的进展。
还在苦苦寻找开源的机器人大模型?试试RoboFlamingo!