
让AI像人类一样认知真实世界!UCLA谷歌强强联手,长时记忆+3D空间理解超越基线16.5%
让AI像人类一样认知真实世界!UCLA谷歌强强联手,长时记忆+3D空间理解超越基线16.5%想象一下,你在一个陌生的房子里寻找合适的礼物盒包装泰迪熊,需要记住每个房间里的物品特征、位置关系,并根据反馈调整行动。
想象一下,你在一个陌生的房子里寻找合适的礼物盒包装泰迪熊,需要记住每个房间里的物品特征、位置关系,并根据反馈调整行动。
近日,NVIDIA 联合香港大学、MIT 等机构重磅推出 Fast-dLLM,以无需训练的即插即用加速方案,实现了推理速度的突破!通过创新的技术组合,在不依赖重新训练模型的前提下,该工作为扩散模型的推理加速带来了突破性进展。本文将结合具体技术细节与实验数据,解析其核心优势。
首个用于加速扩散式大语言模型(diffusion-based Large Language Models, 简称 dLLMs)推理过程的免训练方法。
2025年2月27日,由前扩散模型领域顶尖研究者创立的Inception Labs正式发布了全球首个商业级扩散大语言模型(dLLM)——“Mercury”。这一里程碑式产品不仅在生成速度、硬件效率和成本控制上实现突破,更标志着自然语言处理技术从自回归(Autoregressive)范式向扩散(Diffusion)范式的重大跃迁。
当前的 AI 领域,可以说 Transformer 与扩散模型是最热门的模型架构。也因此,有不少研究团队都在尝试将这两种架构融合到一起,以两者之长探索新一代的模型范式,比如我们之前报道过的 LLaDA。不过,之前这些成果都还只是研究探索,并未真正实现大规模应用。
该技术报告的主要作者 Lu Wang, Fangkai Yang, Chaoyun Zhang, Shilin He, Pu Zhao, Si Qin 等均来自 Data, Knowledge, and Intelligence (DKI) 团队,为微软 TaskWeaver, WizardLLM, Windows GUI Agent UFO 的核心开发者。
Robin3D通过鲁棒指令数据生成引擎(RIG)生成的大规模数据进行训练,以提高模型在3D场景理解中的鲁棒性和泛化能力,在多个3D多模态学习基准测试中取得了优异的性能,超越了以往的方法,且无需针对特定任务的微调。