
首次!流匹配模型引入GRPO,GenEval几近满分,组合生图能力远超GPT-4o
首次!流匹配模型引入GRPO,GenEval几近满分,组合生图能力远超GPT-4o流匹配模型因其坚实的理论基础和在生成高质量图像方面的优异性能,已成为图像生成(Stable Diffusion, Flux)和视频生成(可灵,WanX,Hunyuan)领域最先进模型的训练方法。然而,这些最先进的模型在处理包含多个物体、属性与关系的复杂场景,以及文本渲染任务时仍存在较大困难。
流匹配模型因其坚实的理论基础和在生成高质量图像方面的优异性能,已成为图像生成(Stable Diffusion, Flux)和视频生成(可灵,WanX,Hunyuan)领域最先进模型的训练方法。然而,这些最先进的模型在处理包含多个物体、属性与关系的复杂场景,以及文本渲染任务时仍存在较大困难。
在视觉语言模型(Vision-Language Models,VLMs)取得突破性进展的当下,长视频理解的挑战显得愈发重要。以标准 24 帧率的标清视频为例,仅需数分钟即可产生逾百万的视觉 token,这已远超主流大语言模型 4K-128K 的上下文处理极限。
近年来,生成式人工智能(Generative AI)技术的突破性进展,特别是文本到图像 T2I 生成模型的快速发展,已经使 AI 系统能够根据用户输入的文本提示(prompt)生成高度逼真的图像。从早期的 DALL・E 到 Stable Diffusion、Midjourney 等模型,这一领域的技术迭代呈现出加速发展的态势。
金融科技巨头Stripe 周三在其年度用户大会 Stripe Sessions 上宣布了一系列新产品发布。
当AI与工具相结合,智能体不再只是概念!Minion-agent整合多框架能力,解决碎片化问题,支持多智能体协作与工具调用,降低开发门槛,已在多个场景中展现高效能力,有望推动AI智能体创新和普及!
红杉资本预计AI市场规模将远超当前约4000亿美元的云计算市场,在未来10-20年内达到难以估量的体量。初创企业需聚焦应用层,深耕垂直领域,提供端到端解决方案。AWS研究显示,全球企业正加速拥抱生成式AI,首席AI官(CAIO)职位将成为企业标配。
扩散模型(Diffusion Models)近年来在生成任务上取得了突破性的进展,不仅在图像生成、视频合成、语音合成等领域都实现了卓越表现,推动了文本到图像、视频生成的技术革新。然而,标准扩散模型的设计通常只适用于从随机噪声生成数据的任务,对于图像翻译或图像修复这类明确给定输入和输出之间映射关系的任务并不适合。
近年来,图形用户界面(GUI)自动化技术正在逐步改变人机交互和办公自动化的生态。然而,以 Robotic Process Automation(RPA)为代表的传统自动化工具通常依赖固定脚本进行操作,存在界面变化敏感、维护成本高昂、用户体验欠佳等明显问题。
自 OpenAI 发布 Sora 以来,AI 视频生成技术进入快速爆发阶段。凭借扩散模型强大的生成能力,我们已经可以看到接近现实的视频生成效果。但在模型逼真度不断提升的同时,速度瓶颈却成为横亘在大规模应用道路上的最大障碍。
据内部人士透露,由 OpenAI 前训练后研究副总裁利亚姆·费杜斯创立的初创公司 Periodic Labs,已向潜在投资者表示希望以至少 10 亿美元的估值筹集数亿美元资金。这对于仅成立两个月的初创企业来说是一个相当高的估值。