
多专家Prompt: 让LLM拥有群体决策的智慧 |最新
多专家Prompt: 让LLM拥有群体决策的智慧 |最新在当前的LLM应用开发中,工程师们通常通过使用单一角色或专家视角的方式来处理复杂问题。这种单一视角虽然能够提供一定的专业性,但也经常因为专家视角的局限性带来偏见,影响输出的全面性和可靠性。
在当前的LLM应用开发中,工程师们通常通过使用单一角色或专家视角的方式来处理复杂问题。这种单一视角虽然能够提供一定的专业性,但也经常因为专家视角的局限性带来偏见,影响输出的全面性和可靠性。
大家对in-context learning(ICL)的能力可能已经很熟悉了,您通常会通过上下文示例就能快速让prompt适应新任务。然而,作为AI应用开发者,您是否思考过:为什么有时候精心设计的few-shot prompt会失效?为什么相同的prompt模式在不同场景下效果差异巨大?
在当前大语言模型(LLM)蓬勃发展的环境下,Prompt工程师们面临着一个两难困境:要么使用像LangChain这样功能强大但学习曲线陡峭的框架,要么选择自动化程度更高DSPy但牺牲了对提示词精确控制的工具。IBM研究院和UC Davis大学最近推出的PDL(Prompt Declaration Language,提示词声明语言)或许打破了这个困境,让AI开发者能真正拿回Prompt的控制权。
好家伙!谷歌超25%新代码都由AI生成了。
如何通过更好的提示工程来提升模型的推理能力,一直是研究人员和工程师们关注的重点。
Open-Sora-Plan迎来又一次升级。新的Open-Sora-Plan v1.3.0版本引入了五个新特性:性能更强、成本更低的WFVAE;Prompt refiner;高质量数据清洗策略;全新稀疏注意力的DiT,以及动态分辨率、动态时长的支持。
别说Prompt压缩不重要,你可以不在乎Token成本,但总要考虑内存和LLM响应时间吧?一个显著的问题逐渐浮出水面:随着任务复杂度增加,提示词(Prompt)往往需要变得更长,以容纳更多详细需求、上下文信息和示例。这不仅降低了推理速度,还会增加内存开销,影响用户体验。
在人工智能技术快速发展的今天,大语言模型(LLM)已经展现出惊人的能力。然而,让这些模型生成规范的结构化输出仍然是一个难以攻克的技术难题。不论是在开发自动化工具、构建特定领域的解决方案,还是在进行开发工具集成时,都迫切需要LLM能够产生格式严格、内容可靠的输出。
RAG通过纳入外部文档可以辅助LLM进行更复杂的推理,降低问题求解所需的推理深度,但由于文档噪声的存在,其提升效果可能会受限。中国人民大学的研究表明,尽管RAG可以提升LLM的推理能力,但这种提升作用并不是无限的,并且会受到文档中噪声信息的影响。通过DPrompt tuning的方法,可以在一定程度上提升LLM在面对噪声时的性能。
最近,来自德国奥尔登堡大学计算智能实验室的研究人员Oliver Kramer和Jill Baumann提出了一种创新的方法——认知提示(Cognitive Prompting),通过模拟人类认知过程来提升LLM的问题解决能力。这项研究将在ICLR 2025会议上发表,本文将为各位读者朋友详细解读这一突破性的技术。