为什么大模型API的output token比input token贵?
为什么大模型API的output token比input token贵?从大模型爆发到现在,我就一直好奇为什么output token比input token要贵,而且有的会贵好几倍!今天就这个话题和大家聊一聊。
从大模型爆发到现在,我就一直好奇为什么output token比input token要贵,而且有的会贵好几倍!今天就这个话题和大家聊一聊。
比OpenAI最强的GPT-4o更快,函数调用能力与GPT-4相当,同时比它小N倍,且只需要一张卡来做推理。
2023年中国大模型领域,经历最跌宕起伏的人。
Llama 3.1 刚刚发布,你是否已经尝试了呢?就算你的个人计算机是最近的顶尖配置,运行其中最小的 8B 版本可能也依然会有明显延迟。为了提升模型的推理效率,研究者想出了多种多样的方法,但其中很多都会让模型牺牲一些准确度。
让模型知道自己擅长什么、不擅长什么是一个很重要的问题。
近日,MIT CSAIL 的一个研究团队(一作为 MIT 在读博士陈博远)成功地将全序列扩散模型与下一 token 模型的强大能力统合到了一起,提出了一种训练和采样范式:Diffusion Forcing(DF)。
当今的LLM已经号称能够支持百万级别的上下文长度,这对于模型的能力来说,意义重大。但近日的两项独立研究表明,它们可能只是在吹牛,LLM实际上并不能理解这么长的内容。
OpenAI突发新模型,GPT-3.5退役,大模型成本2年骤降99%
13.8和13.11哪个大?这个问题不光难倒了部分人类,还让一票大模型折戟。AI如今都能做AI奥数题了,但简单的常识问题对它们依然难如登天。其实,无论是比大小,还是卷心菜难题,都揭示了LLM在token预测上的一个重大缺陷。
为什么说理解长视频难如 “大海捞针”?