
UC伯克利等提出具身智能「动作Tokenizer」,效率飙升5倍!
UC伯克利等提出具身智能「动作Tokenizer」,效率飙升5倍!研究者提出了FAST,一种高效的动作Tokenizer。通过结合离散余弦变换(DCT)和字节对编码(BPE),FAST显著缩短了训练时间,并且能高效地学习和执行复杂任务,标志着机器人自回归Transformer训练的一个重要突破。
研究者提出了FAST,一种高效的动作Tokenizer。通过结合离散余弦变换(DCT)和字节对编码(BPE),FAST显著缩短了训练时间,并且能高效地学习和执行复杂任务,标志着机器人自回归Transformer训练的一个重要突破。
大模型应用落地元年,谁家业务更值得关注?
2019 年问世的 GPT-2,其 tokenizer 使用了 BPE 算法,这种算法至今仍很常见,但这种方式是最优的吗?来自 HuggingFace 的一篇文章给出了解释。
就在OpenAI热闹的12天发布会刚刚落下帷幕,谷歌的火力全开新模型Voe2和Gemnini2吸引了全球AI开发者的眼球时,Meta作为三巨头之一则在筹划着一场静悄悄的革命。
Sora、Genie等模型会都用到的Tokenizer,微软下手了—— 开源了一套全能的Video Tokenizer,名为VidTok。
BLT 在许多基准测试中超越了基于 token 的架构。
大语言模型直接理解复杂图结构的新方法来了:
tokenizer对于图像、视频生成的重要性值得重视。
卡内基梅隆大学提出了视频生成模型加速方法Run-Length Tokenization(RLT),被NeurIPS 2024选为Spotlight论文。 在精度几乎没有损失的前提下,RLT可以让模型训练和推理速度双双提升。
本论文第一作者倪赞林是清华大学自动化系 2022 级直博生,师从黄高副教授,主要研究方向为高效深度学习与图像生成。他曾在 ICCV、CVPR、ECCV、ICLR 等国际会议上发表多篇学术论文。