
李飞飞、吴佳俊团队新作:不需要卷积和GAN,更好的图像tokenizer来了
李飞飞、吴佳俊团队新作:不需要卷积和GAN,更好的图像tokenizer来了当我们看到一张猫咪照片时,大脑自然就能识别「这是一只猫」。但对计算机来说,它看到的是一个巨大的数字矩阵 —— 假设是一张 1000×1000 像素的彩色图片,实际上是一个包含 300 万个数字的数据集(1000×1000×3 个颜色通道)。每个数字代表一个像素点的颜色深浅,从 0 到 255。
当我们看到一张猫咪照片时,大脑自然就能识别「这是一只猫」。但对计算机来说,它看到的是一个巨大的数字矩阵 —— 假设是一张 1000×1000 像素的彩色图片,实际上是一个包含 300 万个数字的数据集(1000×1000×3 个颜色通道)。每个数字代表一个像素点的颜色深浅,从 0 到 255。
当今世界,人们都在谈论生成式人工智能。全世界都知道所有最新的GenAI概念和术语——因此,你会比以往听到更多这样的话:“这个词不等于token”。全世界都开始实施至少一个或两个GenAI用例,当然——我引用它的意思是“改变生活”。
CLIP、DINO、SAM 基座的重磅问世,推动了各个领域的任务大一统,也促进了多模态大模型的蓬勃发展。
长文本任务是当下大模型研究的重点之一。在实际场景和应用中,普遍存在大量长序列(文本、语音、视频等),有些甚至长达百万级 tokens。
LLM自身有望在无限长token下检索信息!无需训练,在检索任务「大海捞针」(Needle-in-a-Haystack)测试中,新方法InfiniRetri让有效上下文token长度从32K扩展至1000+K,让7B模型比肩72B模型。
2025 年 2 月发布的 NoLiMA 是一种大语言模型(LLM)长文本理解能力评估方法。不同于传统“大海捞针”(Needle-in-a-Haystack, NIAH)测试依赖关键词匹配的做法,它最大的特点是 通过精心设计问题和关键信息,迫使模型进行深层语义理解和推理,才能从长文本中找到答案。
大语言模型长序列文本生成效率新突破——生成10万Token的文本,传统自回归模型需要近5个小时,现在仅需90分钟!
今天给大家看个新东西,聊一聊我在怎么防AI洗稿。。。
ChatGPT 平地一声雷,打乱了很多人、很多行业的轨迹和节奏。这两年模型发布的数量更是数不胜数,其中文本大模型就占据了 AIGC 赛道的半壁江山。关注我的家人们永远都是抢占 AI 高地的冲锋者。
LLM 在生成 long CoT 方面展现出惊人的能力,例如 o1 已能生成长度高达 100K tokens 的序列。然而,这也给 KV cache 的存储带来了严峻挑战。