TPAMI | DC-SAM:打破SAM交互限制,基于循环一致性的图像与视频上下文分割方法
TPAMI | DC-SAM:打破SAM交互限制,基于循环一致性的图像与视频上下文分割方法上下文分割(In-Context Segmentation)旨在通过参考示例指导模型实现对特定目标的自动化分割。尽管 SAM 凭借卓越的零样本泛化能力为此提供了强大的基础,但将其应用于此仍受限于提示(如点或框)构建,这样的需求不仅制约了批量推理的自动化效率,更使得模型在处理复杂的连续视频时,难以维持时空一致性。
上下文分割(In-Context Segmentation)旨在通过参考示例指导模型实现对特定目标的自动化分割。尽管 SAM 凭借卓越的零样本泛化能力为此提供了强大的基础,但将其应用于此仍受限于提示(如点或框)构建,这样的需求不仅制约了批量推理的自动化效率,更使得模型在处理复杂的连续视频时,难以维持时空一致性。
让大模型轻松处理比自身上下文窗口长两个数量级的超长文本!
AI 时代飞书更大的价值,与打开更丰富「上下文」的输入端口紧密相关。
RAG与agent用到深水区,一定会遇到这个问题: 明明架构很完美,私有数据也做了接入,但项目上线三天,不但token账单爆了,模型输出结果也似乎总差点意思。
提高大模型记忆这块儿,美国大模型开源王者——英伟达也出招了。
针对大模型长文本处理难题,Transformer架构的核心作者之一Llion Jones领导的研究团队开源了一项新技术DroPE。
家人们, 大概是从去年下半年上下文工程这个概念火了之后,我开始有意识的进行一些碎片化的记录。
256K文本预加载提速超50%,还解锁了1M上下文窗口。
最近,Cursor 也发表了一篇文章《Dynamic context discovery》,分享了他们是怎么做上下文管理的。结合 Manus、Cursor 这两家 Agent 领域头部团队的思路,我们整理了如何做好上下文工程的一些关键要点。
借鉴人类联想记忆,嵌套学习让AI在运行中构建抽象结构,超越Transformer的局限。谷歌团队强调:优化器与架构互为上下文,协同进化才能实现真正持续学习。这篇论文或成经典,开启AI从被动训练到主动进化的大门。