曾几何时,LLM还是憨憨的。 脑子里的知识比较混乱,同时上下文窗口长度也有限。 检索增强生成(RAG)的出现在很大程度上提升了模型的性能。
曾几何时,LLM还是憨憨的。 脑子里的知识比较混乱,同时上下文窗口长度也有限。 检索增强生成(RAG)的出现在很大程度上提升了模型的性能。
当今的LLM已经号称能够支持百万级别的上下文长度,这对于模型的能力来说,意义重大。但近日的两项独立研究表明,它们可能只是在吹牛,LLM实际上并不能理解这么长的内容。
视频生成也能参考“上下文”?!
秀杀手级AI玩法、Gemini安卓合体截胡苹果、最强TPU,谷歌2小时提了121次AI。
昨天刚刚在顶会ICLR作为特邀演讲(Invited Talk)中“国内唯一”的大模型玩家智谱AI,今天又放出了一个好消息
在刚刚举行的 ICLR 2024 大会上,智谱AI的大模型技术团队公布了面向激动人心的AGI通用人工智能前景的三大技术趋势,同时预告了GLM的后续升级版本。
堂堂开源之王Llama 3,原版上下文窗口居然只有……8k,让到嘴边的一句“真香”又咽回去了。
大型语言模型(LLM)往往会追求更长的「上下文窗口」,但由于微调成本高、长文本稀缺以及新token位置引入的灾难值(catastrophic values)等问题,目前模型的上下文窗口大多不超过128k个token
为解决大模型(LLMs)在处理超长输入序列时遇到的内存限制问题,本文作者提出了一种新型架构:Infini-Transformer,它可以在有限内存条件下,让基于Transformer的大语言模型(LLMs)高效处理无限长的输入序列。实验结果表明:Infini-Transformer在长上下文语言建模任务上超越了基线模型,内存最高可节约114倍。
它通过将压缩记忆(compressive memory)整合到线性注意力机制中,用来处理无限长上下文