
400万token上下文、推理再加速46%!最新开源方案升级MIT成果,推理成本再降低
400万token上下文、推理再加速46%!最新开源方案升级MIT成果,推理成本再降低22倍加速还不够,再来提升46%,而且方法直接开源!这就是开源社区改进MIT爆火项目StreamingLLM的最新成果。
来自主题: AI资讯
7222 点击 2024-01-08 14:44
22倍加速还不够,再来提升46%,而且方法直接开源!这就是开源社区改进MIT爆火项目StreamingLLM的最新成果。
作者重点关注了基于 Transformer 的 LLM 模型体系结构在从预训练到推理的所有阶段中优化长上下文能力的进展。
就在昨天,百川智能正式发布Baichuan2-Turbo系列API,192K的超长上下文窗口+搜索增强知识库,解决了困扰行业已久的大模型商用落地难问题。
EMNLP顶会落下帷幕,各种奖项悉数颁出。最佳长论文奖被北大微信AI团队收入囊中,由北大孙栩老师和微信周杰、孟凡东合作指导。
我们都知道,大语言模型(LLM)能够以一种无需模型微调的方式从少量示例中学习,这种方式被称为「上下文学习」(In-context Learning)。这种上下文学习现象目前只能在大模型上观察到。比如 GPT-4、Llama 等大模型在非常多的领域中都表现出了杰出的性能,但还是有很多场景受限于资源或者实时性要求较高,无法使用大模型。