
高质量「上下文工程」资源整理(含速览和精读)
高质量「上下文工程」资源整理(含速览和精读)上下文工程(Context Engineering)现在有多火,就不用多说了吧。
上下文工程(Context Engineering)现在有多火,就不用多说了吧。
主打“自动化执行、多模型调用、上下文记忆”的 AI 编程应用大热,但运行卡顿、资源消耗惊人、推理成本过高等问题也随之而来。
上下文学习(In-Context Learning, ICL)、few-shot,经常看我文章的朋友几乎没有人不知道这些概念,给模型几个例子(Demos),它就能更好地理解我们的意图。但问题来了,当您精心挑选了例子、优化了顺序,结果模型的表现还是像开“盲盒”一样时……有没有可能,问题出在一个我们谁都没太在意的地方,这些例子,到底应该放在Prompt的哪个位置?
开源编程模型的天花板,要被Qwen3-Coder掀翻了。 今天凌晨,Qwen3-Coder-Flash也重磅开源!
Claude Code中的Sub Agents是专门化的AI助手,可以被调用来处理特定类型的任务。
10天前Amazon发布了他们自己的开发平台,Kiro IDE,其中有一个很厉害的交互功能“Spec(Specification)”,强调的是规范的文档,说明书,以一套非常结构化的方法确保开发过程的系统性、可控性和质量,堪称现代软件工程的最佳实践。让vibe coding有一个规范的范式。
扩散语言模型(Diffusion-based LLMs,简称 dLLMs)以其并行解码、双向上下文建模、灵活插入masked token进行解码的特性,成为一个重要的发展方向。
在过去很长一段时间里,科技圈似乎人均都成了“提示词工程师”,大家都在琢磨怎么用最精妙的语言驯服AI。但包括Andrej Karpathy在内的很多行业大佬已经开始反思了,他们认为,决定AI效果的关键,可能早就不是怎么问,而是你给AI喂了什么料。这个思路,就是最近越来越火的上下文工程(Context Engineering)。
编程Agent王座,国产开源模型拿下了!就在刚刚,阿里通义大模型团队开源Qwen3-Coder,直接刷新AI编程SOTA——不仅在开源界超过DeepSeek V3和Kimi K2,连业界标杆、闭源的Claude Sonnet 4都比下去了。
最近使用cursor的朋友可能已经遇到了这个问题:打开Cursor,准备使用Claude- sonnet4开始Vibe Coding,却看到了"Model not available"的提示。这不是您的网络问题,而是Cursor对中国地区用户限制了高级模型的访问。对于习惯了AI辅助编程的工程师来说,这简直像是突然失去了得力助手。