全面战胜ReAct!斯坦福全新智能体推理框架,性能提升112.5%
全面战胜ReAct!斯坦福全新智能体推理框架,性能提升112.5%斯坦福和MIT的研究团队推出了一种新的AI智能体推理框架ReCAP,在长上下文任务中全面超越了现有的主流框架ReAct,性能提升显著。ReCAP通过独特的递归树结构和三大机制,解决了大语言模型在复杂任务中常见的目标漂移、上下文断层和成本爆炸等问题。
斯坦福和MIT的研究团队推出了一种新的AI智能体推理框架ReCAP,在长上下文任务中全面超越了现有的主流框架ReAct,性能提升显著。ReCAP通过独特的递归树结构和三大机制,解决了大语言模型在复杂任务中常见的目标漂移、上下文断层和成本爆炸等问题。
随着大语言模型与开发工具链的深度融合,命令行终端正被重塑为开发者的AI协作界面。本文以 Google gemini-cli 为范本,通过源码解构,系统性分析其 Agent 内核、ReAct 工作流、工具调用与上下文管理等核心模块的实现原理。为希望构建终端 Agent 的开发者,提供工程实现的系统化参考。
RAG效果不及预期,试试这10个上下文处理优化技巧。对大部分开发者来说,搭一个RAG或者agent不难,怎么把它优化成生产可用的状态最难。在这个过程中,检索效率、准确性、成本、响应速度,都是重点关注问题。
Context Pruning如何结合rerank,优化RAG上下文?
Gemini 3力压全场,OpenAI坐不住了。发布Codex新版本——GPT-5.1-Codex-Max,突破上下文窗口限制,实现跨越数百万token的长时间连续工作,最长超过24小时的那种。
人类高级视觉皮层在个体间存在显著的功能差异,而构建大脑编码模型(brain encoding models)—— 即能够从视觉刺激(如图像)预测人脑神经响应的计算模型 —— 是理解人类视觉系统如何表征世界的关键。传统视觉编码模型通常需要为每个新被试采集大量数据(数千张图像对应的脑活动),成本高昂且难以推广。
Claude 近期发布的 Skills 功能很火,不少开发者都在尝试、试用。
AI Agent 在处理复杂任务时经常“掉链子”。你刚告诉它的信息,它很快就忘了。给它的工具越多,它反而越混乱。这不是个例。
谷歌在第三天发布了《上下文工程:会话与记忆》(Context Engineering: Sessions & Memory) 白皮书。文中开篇指出,LLM模型本身是无状态的 (stateless)。如果要构建有状态的(stateful)和个性化的 AI,关键在于上下文工程。
当前视频检索研究正陷入一个闭环困境:以MSRVTT为代表的窄域基准,长期主导模型在粗粒度文本查询上的优化,导致训练数据有偏、模型能力受限,难以应对真实世界中细粒度、长上下文、多模态组合等复杂检索需求。