
合成数据也能通吃真实世界?首个融合重建-预测-规划的生成式世界模型AETHER开源
合成数据也能通吃真实世界?首个融合重建-预测-规划的生成式世界模型AETHER开源近日,上海人工智能实验室(上海 AI 实验室)开源了生成式世界模型 AETHER。该模型全部由合成数据训练而成,不仅在传统重建与生成任务中表现领先,更首次赋予大模型在真实世界中的 3D 空间决策与规划能力,
近日,上海人工智能实验室(上海 AI 实验室)开源了生成式世界模型 AETHER。该模型全部由合成数据训练而成,不仅在传统重建与生成任务中表现领先,更首次赋予大模型在真实世界中的 3D 空间决策与规划能力,
世界模型领域最新进展,要比拼“世界生成”了。
多点发力,协同并进,才能让AI的成长有更多道路可走
基于当前观察,预测铰链物体的的运动,尤其是 part-level 级别的运动,是实现世界模型的关键一步。
人工智能正在重塑游戏和互动媒体行业,人工智能是前所未有的价值创造源泉,它重塑行业的速度甚至比我们在互联网、移动电话和云计算兴起时所观察到的平台和架构变革还要快。
Nvidia刚刚发布了「世界生成」模型Cosmos-Transfer1,可以根据多种模态的空间控制输入(如分割、深度和边缘)生成世界模拟,使得世界生成具有高度可控性。开发者使用模型能够创建高度逼真的模拟环境,用于训练机器人和自动驾驶车辆。
AI如何理解物理世界?视频联合嵌入预测架构V-JEPA带来新突破,无需硬编码核心知识,在自监督预训练中展现出对直观物理的理解,超越了基于像素的预测模型和多模态LLM。
中国首个全自研空间智能AI诞生了,单图即可生成360度无限3D场景,实时互动自由探索。这不仅是技术的革新,更预示着,游戏电影等领域即将迎来颠覆性的变革。
当下,视频生成备受关注,有望成为处理物理知识的 “世界模型” (World Model),助力自动驾驶、机器人等下游任务。然而,当前模型在从 “生成” 迈向世界建模的过程中,存在关键短板 —— 对真实世界物理规律的刻画能力不足。
在过去的两年里,城市场景生成技术迎来了飞速发展,一个全新的概念 ——世界模型(World Model)也随之崛起。当前的世界模型大多依赖 Video Diffusion Models(视频扩散模型)强大的生成能力,在城市场景合成方面取得了令人瞩目的突破。然而,这些方法始终面临一个关键挑战:如何在视频生成过程中保持多视角一致性?