
线性扩散模型LiT来了,用极简线性注意力助力扩散模型AIPC时代端侧部署
线性扩散模型LiT来了,用极简线性注意力助力扩散模型AIPC时代端侧部署香港大学联合上海人工智能实验室,华为诺亚方舟实验室提出高效扩散模型 LiT:探索了扩散模型中极简线性注意力的架构设计和训练策略。LiT-0.6B 可以在断网状态,离线部署在 Windows 笔记本电脑上,遵循用户指令快速生成 1K 分辨率逼真图片。
香港大学联合上海人工智能实验室,华为诺亚方舟实验室提出高效扩散模型 LiT:探索了扩散模型中极简线性注意力的架构设计和训练策略。LiT-0.6B 可以在断网状态,离线部署在 Windows 笔记本电脑上,遵循用户指令快速生成 1K 分辨率逼真图片。
OpenAI 接连发布 o1 和 o3 模型,大模型的高阶推理能力正在迎来爆发式增强。在预训练 Scaling law “撞墙” 的背景下,探寻新的 Scaling law 成为业界关注的热点。高阶推理能力有望开启新的 Scaling law,为大模型的发展注入新的活力。
多模态理解与生成一体化模型,致力于将视觉理解与生成能力融入同一框架,不仅推动了任务协同与泛化能力的突破,更重要的是,它代表着对类人智能(AGI)的一种深层探索。
大语言模型(LLM)在自然语言处理领域取得了巨大突破,但在复杂推理任务上仍面临着显著挑战。现有的Chain-of-Thought(CoT)和Tree-of-Thought(ToT)等方法虽然通过分解问题或结构化提示来增强推理能力,但它们通常只进行单次推理过程,无法修正错误的推理路径,这严重限制了推理的准确性。
近日,中科大王杰教授团队(MIRA Lab)和华为诺亚方舟实验室(Huawei Noah's Ark Lab)联合提出了可生成具有成千上万节点规模的神经电路生成与优化框架,具备高扩展性和高可解释性,这为新一代芯片电路逻辑综合工具奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。
大语言模型(如 GPT-4)具备强大的语言处理能力,但其独立运作时仍存在局限性,如无法进行复杂计算,获取不到实时信息,难以提供专业定制化功能等。而大语言模型的工具调用能力使其不仅限于文字处理,更能提供全面、实时、精确的服务,极大地扩展了其应用范围和实际价值。
芯片物理布局,有了直指性能指标的新测评标准!
数据是大语言模型(LLMs)成功的基石,但并非所有数据都有益于模型学习。
人工智能(AI)在过去十年里取得了长足进步,特别是在自然语言处理和计算机视觉领域。然而,如何提升 AI 的认知能力和推理能力,仍然是一个巨大的挑战。
基于 Transformer 架构的大语言模型在 NLP 领域取得了令人惊艳的效果,然而,Transformer 中自注意力带来的二次复杂度使得大模型的推理成本和内存占用十分巨大,特别是在长序列的场景中。