
多模态BUG修复新SOTA:慕尼黑工大GUIRepair登上SWE-bench Multimodal榜单第一
多模态BUG修复新SOTA:慕尼黑工大GUIRepair登上SWE-bench Multimodal榜单第一自动化修复真实世界的软件缺陷问题是自动化程序修复研究社区的长期目标。然而,如何自动化解决视觉软件缺陷仍然是一个尚未充分探索的领域。最近,随着 SWE-bench 团队发布最新的多模态 Issue 修复
自动化修复真实世界的软件缺陷问题是自动化程序修复研究社区的长期目标。然而,如何自动化解决视觉软件缺陷仍然是一个尚未充分探索的领域。最近,随着 SWE-bench 团队发布最新的多模态 Issue 修复
本文来自加州大学圣克鲁兹分校(UCSC)、苹果公司(Apple)与加州大学伯克利分校(UCB)的合作研究。第一作者刘彦青,本科毕业于浙江大学,现为UCSC博士生,研究方向包括多模态理解、视觉-语言预训
工具越多,效率越低?在信息洪流里,我们被无尽的切换与复制粘贴拖住了脚。Fellou让每个人都重获跨领域创造力,做自己的数字达芬奇:交互、任务、记忆三大连续体无缝衔接,Deep Search与Visual Report免费开放,跨应用自动执行、多模态创作与动态工作流一站打通。
打开多模态自由创作的大门。
在多模态大模型的基座上,视觉 - 语言 - 动作(Visual-Language-Action, VLA)模型使用大量机器人操作数据进行预训练,有望实现通用的具身操作能力。
苹果在 Hugging Face上放大招了!这次直接甩出两条多模态主线:FastVLM主打「快」,字幕能做到秒回;MobileCLIP2主打「轻」,在 iPhone 上也能起飞。更妙的是,模型和Demo已经全开放,Safari网页就能体验。大模型,真·跑上手机了。
能看懂视频并进行跨模态推理的大模型Keye-VL 1.5,快手开源了。
近年来,生成式 AI 和多模态大模型在各领域取得了令人瞩目的进展。然而,在现实世界应用中,动态环境下的数据分布和任务需求不断变化,大模型如何在此背景下实现持续学习成为了重要挑战
当前,业界顶尖的大模型正竞相挑战“过度思考”的难题,即无论问题简单与否,它们都采用 “always-on thinking” 的详细推理模式。无论是像 DeepSeek-V3.1 这种依赖混合推理架构提供需用户“手动”介入的快慢思考切换,还是如 GPT-5 那样通过依赖庞大而高成本的“专家路由”机制提供的自适应思考切换。
智东西9月1日消息,苹果又公布了大模型研发新进展! 8月28日,苹果在arXiv发布新论文,介绍新一代多模态基础模型MobileCLIP2及其背后的多模态强化训练机制,同天在GitHub、Hugging Face上开源了模型的预训练权重和数据生成代码。