EMOVA(EMotionally Omni-present Voice Assistant),一个能够同时处理图像、文本和语音模态,能看、能听、会说的多模态全能助手,并通过情感控制,拥有更加人性化的交流能力。
EMOVA(EMotionally Omni-present Voice Assistant),一个能够同时处理图像、文本和语音模态,能看、能听、会说的多模态全能助手,并通过情感控制,拥有更加人性化的交流能力。
视觉数据的种类极其多样,囊括像素级别的图标到数小时的视频。现有的多模态大语言模型(MLLM)通常将视觉输入进行分辨率的标准化或进行动态切分等操作,以便视觉编码器处理。然而,这些方法对多模态理解并不理想,在处理不同长度的视觉输入时效率较低。
随着人工智能(AI)技术的飞速发展,特别是在生成式AI领域的突破,我们见证了许多新兴技术的诞生,它们正逐步改变着我们的生活和工作方式。
在多模态领域,开源模型也超闭源了!
Meta首个理解图文的多模态Llama 3.2来了!这次,除了11B和90B两个基础版本,Meta还推出了仅有1B和3B轻量级版本,适配了Arm处理器,手机、AR眼镜边缘设备皆可用。
NVLM 1.0系列多模态大型语言模型在视觉语言任务上达到了与GPT-4o和其他开源模型相媲美的水平,其在纯文本性能甚至超过了LLM骨干模型,特别是在文本数学和编码基准测试中,平均准确率提高了4.3个百分点。
视觉 / 激光雷达里程计是计算机视觉和机器人学领域中的一项基本任务,用于估计两幅连续图像或点云之间的相对位姿变换。它被广泛应用于自动驾驶、SLAM、控制导航等领域。最近,多模态里程计越来越受到关注,因为它可以利用不同模态的互补信息,并对非对称传感器退化具有很强的鲁棒性。
扩展多模态大语言模型(MLLMs)的长上下文能力对于视频理解、高分辨率图像理解以及多模态智能体至关重要。这涉及一系列系统性的优化,包括模型架构、数据构建和训练策略,尤其要解决诸如随着图像增多性能下降以及高计算成本等挑战。
阿里开源,又拿第一了。
MMMU-Pro通过三步构建过程(筛选问题、增加候选选项、引入纯视觉输入设置)更严格地评估模型的多模态理解能力;模型在新基准上的性能下降明显,表明MMMU-Pro能有效避免模型依赖捷径和猜测策略的情况。