
让视觉语言模型像o3一样动手搜索、写代码!Visual ARFT实现多模态智能体能力
让视觉语言模型像o3一样动手搜索、写代码!Visual ARFT实现多模态智能体能力在大型推理模型(例如 OpenAI-o3)中,一个关键的发展趋势是让模型具备原生的智能体能力。具体来说,就是让模型能够调用外部工具(如网页浏览器)进行搜索,或编写/执行代码以操控图像,从而实现「图像中的思考」。
在大型推理模型(例如 OpenAI-o3)中,一个关键的发展趋势是让模型具备原生的智能体能力。具体来说,就是让模型能够调用外部工具(如网页浏览器)进行搜索,或编写/执行代码以操控图像,从而实现「图像中的思考」。
当你在搜索“中国队在多哈乒乓球锦标赛的成绩”时,一篇新闻报道的文本部分和你的查询的相关性是 0.7,配图的相关性 0.5;另一篇则是文本相关性为 0.6,图片也是 0.6。那么,哪一篇报道才是你真正想要的呢?
近年来,LLM 及其多模态扩展(MLLM)在多种任务上的推理能力不断提升。然而, 现有 MLLM 主要依赖文本作为表达和构建推理过程的媒介,即便是在处理视觉信息时也是如此 。
在文档理解领域,多模态大模型(MLLMs)正以惊人的速度进化。从基础文档图像识别到复杂文档理解,它们在扫描或数字文档基准测试(如 DocVQA、ChartQA)中表现出色,这似乎表明 MLLMs 已很好地解决了文档理解问题。然而,现有的文档理解基准存在两大核心缺陷:
MedGemma是谷歌 “健康人工智能开发者基础”(Health AI Developer Foundations)计划的核心项目。基于 Gemma 3 架构, MedGemma提供多模态和纯文本两种模型变体,旨在降低医疗 AI 开发门槛。
字节最近真的猛猛开源啊……这一次,他们直接开源了GPT-4o级别的图像生成能力。不止于此,其最新融合的多模态模型BAGEL主打一个“大一统”, 将带图推理、图像编辑、3D生成等功能全都集中到了一个模型。
来自香港科技大学、腾讯西雅图AI Lab、爱丁堡大学、Miniml.AI、英伟达的研究者联合提出了MMLongBench,旨在全面评估多模态模型的长文本理解能力。
在谷歌I/O大会后,创始人谢尔盖·布林惊喜现身,与Hassabis深入探讨AI的推理能力、规模与算法、测试时计算及多模态智能体的应用前景。布林强调AI时代是计算科学家不应退休的黄金期,AI影响将远超互联网与手机。
OpenAI 的 GPT-4o 在图像理解、生成和编辑任务上展现了顶级性能。流行的架构猜想是:
普林斯顿大学与字节 Seed、北大、清华等研究团队合作提出了 MMaDA(Multimodal Large Diffusion Language Models),作为首个系统性探索扩散架构的多模态基础模型,MMaDA 通过三项核心技术突破,成功实现了文本推理、多模态理解与图像生成的统一建模。