AI资讯新闻榜单内容搜索-大型语言模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 大型语言模型
打开黑盒神经网络!港大推出全新「会说话」的推荐系统大模型XRec,从黑盒预测到可解释

打开黑盒神经网络!港大推出全新「会说话」的推荐系统大模型XRec,从黑盒预测到可解释

打开黑盒神经网络!港大推出全新「会说话」的推荐系统大模型XRec,从黑盒预测到可解释

香港大学推出的XRec模型通过融合大型语言模型的语义理解和协同过滤技术,增强了推荐系统的可解释性,使用户能够理解推荐背后的逻辑。这一创新成果不仅提升了用户体验,也为推荐技术的未来发展提供了新方向和动力。

来自主题: AI技术研报
9471 点击    2024-06-21 21:16
大模型压缩量化方案怎么选?无问芯穹Qllm-Eval量化方案全面评估:多模型、多参数、多维度

大模型压缩量化方案怎么选?无问芯穹Qllm-Eval量化方案全面评估:多模型、多参数、多维度

大模型压缩量化方案怎么选?无问芯穹Qllm-Eval量化方案全面评估:多模型、多参数、多维度

基于 Transformer架构的大型语言模型在各种基准测试中展现出优异性能,但数百亿、千亿乃至万亿量级的参数规模会带来高昂的服务成本。例如GPT-3有1750亿参数,采用FP16存储,模型大小约为350GB,而即使是英伟达最新的B200 GPU 内存也只有192GB ,更不用说其他GPU和边缘设备。

来自主题: AI技术研报
8722 点击    2024-06-19 23:30
视觉语言模型导论:这篇论文能成为你进军VLM的第一步

视觉语言模型导论:这篇论文能成为你进军VLM的第一步

视觉语言模型导论:这篇论文能成为你进军VLM的第一步

近些年,语言建模领域进展非凡。Llama 或 ChatGPT 等许多大型语言模型(LLM)有能力解决多种不同的任务,它们也正在成为越来越常用的工具。

来自主题: AI技术研报
8721 点击    2024-06-11 10:08
用神经架构搜索给LLM瘦身,模型变小,准确度有时反而更高

用神经架构搜索给LLM瘦身,模型变小,准确度有时反而更高

用神经架构搜索给LLM瘦身,模型变小,准确度有时反而更高

大型语言模型(LLM)的一个主要特点是「大」,也因此其训练和部署成本都相当高,如何在保证 LLM 准确度的同时让其变小就成了非常重要且有价值的研究课题。

来自主题: AI技术研报
8709 点击    2024-06-11 10:06
FineWeb技术报告出炉!揭秘HuggingFace规模最大、质量最高预训练数据集

FineWeb技术报告出炉!揭秘HuggingFace规模最大、质量最高预训练数据集

FineWeb技术报告出炉!揭秘HuggingFace规模最大、质量最高预训练数据集

从大规模网络爬取、精细过滤到去重技术,通过FineWeb的技术报告探索如何打造高质量数据集,为大型语言模型(LLM)预训练提供更优质的性能。

来自主题: AI资讯
8983 点击    2024-06-09 18:06
这个团队做了OpenAI没Open的技术,开源OpenRLHF让对齐大模型超简单

这个团队做了OpenAI没Open的技术,开源OpenRLHF让对齐大模型超简单

这个团队做了OpenAI没Open的技术,开源OpenRLHF让对齐大模型超简单

随着大型语言模型(LLM)规模不断增大,其性能也在不断提升。尽管如此,LLM 依然面临着一个关键难题:与人类的价值和意图对齐。在解决这一难题方面,一种强大的技术是根据人类反馈的强化学习(RLHF)。

来自主题: AI技术研报
9363 点击    2024-06-07 10:36
next-token被淘汰!Meta实测「多token」训练方法,推理提速3倍,性能大涨10%+

next-token被淘汰!Meta实测「多token」训练方法,推理提速3倍,性能大涨10%+

next-token被淘汰!Meta实测「多token」训练方法,推理提速3倍,性能大涨10%+

研究人员提出了一种新的大型语言模型训练方法,通过一次性预测多个未来tokens来提高样本效率和模型性能,在代码和自然语言生成任务上均表现出显著优势,且不会增加训练时间,推理速度还能提升至三倍。

来自主题: AI技术研报
8651 点击    2024-06-03 11:00
全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型

全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型

全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型

为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐 LLM 方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管经典 RLHF 方法的结果很出色,但其多阶段的过程依然带来了一些优化难题,其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。

来自主题: AI技术研报
9676 点击    2024-05-26 13:45