
腾讯AI Lab开源可复现的深度研究智能体,最大限度降低外部依赖
腾讯AI Lab开源可复现的深度研究智能体,最大限度降低外部依赖深度研究智能体(Deep Research Agents)凭借大语言模型(LLM)和视觉-语言模型(VLM)的强大能力,正在重塑知识发现与问题解决的范式。
深度研究智能体(Deep Research Agents)凭借大语言模型(LLM)和视觉-语言模型(VLM)的强大能力,正在重塑知识发现与问题解决的范式。
近年来,大语言模型(LLM)在语言理解、生成和泛化方面取得了突破性进展,并广泛应用于各种文本任务。随着研究的深入,人们开始关注将 LLM 的能力扩展至非文本模态,例如图像、音频、视频、图结构、推荐系统等。
成立仅一年的初创公司Reflection AI 正洽谈融资逾 10 亿美元,用于开发开源大语言模型,与中国深度求索(DeepSeek)、法国 Mistral 及美国 Meta 等企业展开竞争。
知名AI大模型评测Chatbot Arena放榜!阿里Qwen3-235B-A22B-Instruct-2507位列大语言模型总榜第三,月之暗面Kimi-K2-0711-preview、深度求索DeepSeek-R1-0528并列为总榜第五,以开源之姿超越Claude 4、GPT-4.1等顶尖闭源模型。
现有的方法对大语言模型(LLM)「越狱」攻击评估存在误判和不一致问题。港科大团队提出了GuidedBench评估框架,通过为每个有害问题制定详细评分指南,显著降低了误判率,揭示了越狱攻击的真实成功率远低于此前估计,并为未来研究提供了更可靠的评估标准。
随着人工智能技术的快速发展,大语言模型在自然语言处理领域引发了深刻变革。大语言模型在实际应用中的使用越来越广泛,这些模型通常部署在云原生的基础设施上,需要复杂的流量管理机制以确保服务的稳定性、性能、可扩展性和成本效益。在 Kubernetes(K8S)这一容器编排标准中,现有的 Ingress 组件的流量转发机制提供了基于主机名和请求路径的基本流量路由功能。
大语言模型(LLM)已经在多项自然语言处理任务中展现出卓越能力,但其潜在安全风险仍然是阻碍规模化落地的关键瓶颈。目前社区用于安全对齐的公开数据集,往往偏重于「词汇多样性」,即让同一种风险指令尽可能用不同的表达方式出现,却很少系统考虑指令背后的「恶意意图多样性」以及「越狱策略多样性」。
近年来, 大语言模型 (LLM) 在数学、编程等 "有标准答案" 的任务上取得了突破性进展, 这背后离不开 "可验证奖励" (Reinforcement Learning with Verifiable Rewards, RLVR) 技术的加持。RLVR 依赖于参考信号, 即通过客观标准答案来验证模型响应的可靠性。
对于任何书面文件,比如此刻你正阅读的这篇文章,追问它出自谁手,似乎理所当然。为此,你可能会八卦一番作者履历,了解作者的一些背景,因作者身份能助你辨认他所写内容的权威性。譬如,对于此文,如果我的履历显示我任职于美国的一所大学的传播学教授,你可能会据此认定我谈论大语言模型相关的颠覆性事件是恰如其分的,甚至因此信任我的观点。毕竟,你已确认了“作者”的身份并发现他在此领域颇有建树。
近年来,大语言模型(LLM)的能力越来越强,但它们的“饭量”也越来越大。这个“饭量”主要体现在计算和内存上。当模型处理的文本越来越长时,一个叫做“自注意力(Self-Attention)”的核心机制会导致计算量呈平方级增长。这就像一个房间里的人开会,如果每个人都要和在场的其他所有人单独聊一遍,那么随着人数增加,总的对话次数会爆炸式增长。