
从开源项目到2500万美元融资:如何打造下一代AI Agent的互联网基础设施
从开源项目到2500万美元融资:如何打造下一代AI Agent的互联网基础设施Tavily AI 的故事开始于一个开源项目。创始人 Rotem Weiss 在 2023 年创建了一个叫做 GPT Researcher 的开源工具,目的是让大语言模型能够获取实时的网络数据。当时 ChatGPT 还没有接入互联网搜索功能,这个小工具迅速在开发者社区中走红,收获了近 2 万个 GitHub stars。
Tavily AI 的故事开始于一个开源项目。创始人 Rotem Weiss 在 2023 年创建了一个叫做 GPT Researcher 的开源工具,目的是让大语言模型能够获取实时的网络数据。当时 ChatGPT 还没有接入互联网搜索功能,这个小工具迅速在开发者社区中走红,收获了近 2 万个 GitHub stars。
在图像生成领域,自回归(Autoregressive, AR)模型与扩散(Diffusion)模型之间的技术路线之争始终未曾停歇。大语言模型(LLM)凭借其基于「预测下一个词元」的优雅范式,已在文本生成领域奠定了不可撼动的地位。
在可验证强化学习(RLVR)的推动下,大语言模型在单轮推理任务中已展现出不俗表现。然而在真实推理场景中,LLM 往往需要结合外部工具进行多轮交互,现有 RL 算法在平衡模型的长程推理与多轮工具交互能力方面仍存在不足。
随着 Gemini-Diffusion,Seed-Diffusion 等扩散大语言模型(DLLM)的发布,这一领域成为了工业界和学术界的热门方向。但是,当前 DLLM 存在着在推理时必须采用预设固定长度的限制,对于不同任务都需要专门调整才能达到最优效果。
近一年来,围绕人工智能(AI)、生成式 AI(GenAI)和大语言模型(LLM)的炒作愈演愈烈,大众的兴趣翻了一番,针对 AI 的投资激增,各国政府也采取了更加明确的立场。根据一些人的说法,AI 与人类的未来息息相关。
强化学习(RL)范式虽然显著提升了大语言模型(LLM)在复杂任务中的表现,但其在实际应用中仍面临传统RL框架下固有的探索难题。
近期,基于大语言模型的智能体(LLM-based agent)在学术界和工业界中引起了广泛关注。对于智能体而言,记忆(Memory)是其中的重要能力,承担了记录过往信息和外部知识的功能,对于提高智能体的个性化等能力至关重要。
你有没有发现,AI 应用生成平台们正在走向一条与大家预期完全不同的路?很多人原本以为这会是一场血腥的零和游戏,大家会在价格战中厮杀到底,最终只剩一家独大。但现实却让人意外:这些平台不但没有互相厮杀,反而开始各自寻找差异化的定位,在不同的细分市场中共存共荣。这让我想起了大语言模型市场的发展轨迹,同样出人意料,同样充满启发。
gpt-oss-120b 和 gpt-oss-20b OpenAI终于把开源的模型放出来了。 gpt-oss系列也是自GPT2以来,OpenAI首次开源的大语言模型。
融资10亿美元,要在开源上挑战Deepseek! 前谷歌DeepMind成员、AlphaGo开发者创立Reflection AI,致力于开发开源大语言模型。