AI资讯新闻榜单内容搜索-奖励模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 奖励模型
4000万样本炼出AI读心术,刷新七榜SOTA,最强「人类偏好感应器」开源

4000万样本炼出AI读心术,刷新七榜SOTA,最强「人类偏好感应器」开源

4000万样本炼出AI读心术,刷新七榜SOTA,最强「人类偏好感应器」开源

Skywork-Reward-V2全新发布!巧妙构建超高质量的千万级人类偏好样本,刷新七大评测基准SOTA表现。8款模型覆盖6亿至80亿参数,小体积也能媲美大模型性能。

来自主题: AI技术研报
5823 点击    2025-07-05 14:00
人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破

人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破

人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破

大语言模型(LLM)以生成能力强而著称,但如何能让它「听话」,是一门很深的学问。 基于人类反馈的强化学习(RLHF)就是用来解决这个问题的,其中的奖励模型 (Reward Model, RM)扮演着重要的裁判作用,它专门负责给 LLM 生成的内容打分,告诉模型什么是好,什么是不好,可以保证大模型的「三观」正确。

来自主题: AI技术研报
5964 点击    2025-07-05 12:10
Meta-Think ≠ 记套路,多智能体强化学习解锁大模型元思考泛化

Meta-Think ≠ 记套路,多智能体强化学习解锁大模型元思考泛化

Meta-Think ≠ 记套路,多智能体强化学习解锁大模型元思考泛化

最近,关于大模型推理的测试时间扩展(Test time scaling law )的探索不断涌现出新的范式,包括① 结构化搜索结(如 MCTS),② 过程奖励模型(Process Reward Model )+ PPO,③ 可验证奖励 (Verifiable Reward)+ GRPO(DeepSeek R1)。

来自主题: AI技术研报
6197 点击    2025-07-04 09:44
周志华团队新作:LLM中存在奖励模型,首次理论证明RL对LLM有效性

周志华团队新作:LLM中存在奖励模型,首次理论证明RL对LLM有效性

周志华团队新作:LLM中存在奖励模型,首次理论证明RL对LLM有效性

将大语言模型(LLMs)与复杂的人类价值观对齐,仍然是 AI 面临的一个核心挑战。当前主要的方法是基于人类反馈的强化学习(RLHF)。该流程依赖于一个通过人类偏好训练的奖励模型来对模型输出进行评分,最终对齐后的 LLM 的质量在根本上取决于该奖励模型的质量。

来自主题: AI技术研报
7321 点击    2025-07-03 10:00
首个多模态统一CoT奖励模型来了,模型、数据集、训练脚本全开源

首个多模态统一CoT奖励模型来了,模型、数据集、训练脚本全开源

首个多模态统一CoT奖励模型来了,模型、数据集、训练脚本全开源

在多模态大模型快速发展的当下,如何精准评估其生成内容的质量,正成为多模态大模型与人类偏好对齐的核心挑战。然而,当前主流多模态奖励模型往往只能直接给出评分决策,或仅具备浅层推理能力,缺乏对复杂奖励任务的深入理解与解释能力,在高复杂度场景中常出现 “失真失准”。

来自主题: AI技术研报
8938 点击    2025-05-14 11:01
RL训练总崩溃?R1-Reward稳定解锁奖励模型Long-Cot推理能力

RL训练总崩溃?R1-Reward稳定解锁奖励模型Long-Cot推理能力

RL训练总崩溃?R1-Reward稳定解锁奖励模型Long-Cot推理能力

多模态奖励模型(MRMs)在提升多模态大语言模型(MLLMs)的表现中起着至关重要的作用,在训练阶段可以提供稳定的 reward,评估阶段可以选择更好的 sample 结果,甚至单独作为 evaluator。

来自主题: AI技术研报
7192 点击    2025-05-12 14:51
过程奖励模型也可以测试时扩展?清华、上海AI Lab 23K数据让1.5B小模型逆袭GPT-4o

过程奖励模型也可以测试时扩展?清华、上海AI Lab 23K数据让1.5B小模型逆袭GPT-4o

过程奖励模型也可以测试时扩展?清华、上海AI Lab 23K数据让1.5B小模型逆袭GPT-4o

随着 OpenAI o1 和 DeepSeek R1 的爆火,大语言模型(LLM)的推理能力增强和测试时扩展(TTS)受到广泛关注。然而,在复杂推理问题中,如何精准评估模型每一步回答的质量,仍然是一个亟待解决的难题。传统的过程奖励模型(PRM)虽能验证推理步骤,但受限于标量评分机制,难以捕捉深层逻辑错误,且其判别式建模方式限制了测试时的拓展能力。

来自主题: AI技术研报
7032 点击    2025-04-14 14:39