选LLM-Judge评估,用这个可证明的人类对齐评估框架, ICLR2025匿名论文
选LLM-Judge评估,用这个可证明的人类对齐评估框架, ICLR2025匿名论文在当今AI技术迅猛发展的背景下,大语言模型(LLM)的评估问题已成为一个不可忽视的挑战。传统的做法是直接采用最强大的模型(如GPT-4)进行评估,这就像让最高法院的大法官直接处理所有交通违章案件一样,既不经济也不一定总能保证公正。
在当今AI技术迅猛发展的背景下,大语言模型(LLM)的评估问题已成为一个不可忽视的挑战。传统的做法是直接采用最强大的模型(如GPT-4)进行评估,这就像让最高法院的大法官直接处理所有交通违章案件一样,既不经济也不一定总能保证公正。
模型安全和可靠性、系统整合和互操作性、用户交互和认证…… 当“多模态”“跨模态”成为不可阻挡的AI趋势时,多模态场景下的安全挑战尤其应当引发产学研各界的注意。
最近,我们团队的一位工程师在研究类 ColPali 模型时,受到启发,用新近发布的 jina-clip-v2 模型做了个颇具洞察力的可视化实验。
近年来,视觉-语言-动作模型(Vision-Language-Action, VLA)在诸多机器人任务上取得了显著的进展,但它们仍面临一些关键问题,例如由于仅依赖从成功的执行轨迹中进行行为克隆,导致对新任务的泛化能力较差。
我们或许可以称o3是「更高级的推理AI」,而远不是AGI。 昨天凌晨,OpenAI 连续 12 天发布会终于落下了帷幕,并甩出了最强大的推理模型 o3 系列!
丸辣!原来AI有能力把研究员、用户都蒙在鼓里: 在训练阶段,会假装遵守训练目标;训练结束不受监控了,就放飞自我。 还表现出区别对待免费用户和付费用户的行为。
近年来,随着 Stable Diffusion 等文本到图像生成模型的发展,这些技术使得在保留内容准确性的同时,实现出色的风格转换成为可能。这项技术在数字绘画、广告和游戏设计等领域具有重要的应用价值。
利用概念激活向量破解大模型的安全对齐,揭示LLM重要安全风险漏洞。
网络智能体旨在让一切基于网络功能的任务自动发生。比如你告诉智能体你的预算,它可以帮你预订酒店。既拥有海量常识,又能做长期规划的大语言模型(LLM),自然成为了智能体常用的基础模块。
来自中科大等单位的研究团队共同提出了用来有效评估多模态大模型预训练质量的评估指标 Modality Integration Rate(MIR),能够快速准确地评估多模态预训练的模态对齐程度。