利用概念激活向量破解大模型的安全对齐,揭示LLM重要安全风险漏洞。
利用概念激活向量破解大模型的安全对齐,揭示LLM重要安全风险漏洞。
网络智能体旨在让一切基于网络功能的任务自动发生。比如你告诉智能体你的预算,它可以帮你预订酒店。既拥有海量常识,又能做长期规划的大语言模型(LLM),自然成为了智能体常用的基础模块。
来自中科大等单位的研究团队共同提出了用来有效评估多模态大模型预训练质量的评估指标 Modality Integration Rate(MIR),能够快速准确地评估多模态预训练的模态对齐程度。
随着人工智能大模型的能力日益强大,如何让其行为和目标同人类的价值、偏好、意图之间实现协调一致,即人机对齐(human-AI alignment)问题,变得越发重要。
让 AI 与人类价值观对齐一直都是 AI 领域的一大重要且热门的研究课题,甚至很可能是 OpenAI 高层分裂的一大重要原因 ——CEO 萨姆・奥特曼似乎更倾向于更快实现 AI 商业化,而以伊尔亚・苏茨克维(Ilya Sutskever)为代表的一些研究者则更倾向于先保证 AI 安全。
如何全模态大模型与人类的意图相对齐,已成为一个极具前瞻性且至关重要的挑战。
DeepMind最近的研究提出了一种新框架AligNet,通过模拟人类判断来训练教师模型,并将类人结构迁移到预训练的视觉基础模型中,从而提高模型在多种任务上的表现,增强了模型的泛化性和鲁棒性,为实现更类人的人工智能系统铺平了道路。
近年来,大模型的高速发展极大地改变了人工智能的格局。对齐(Alignment) 是使大模型的行为符合人类意图和价值观,引导大模型按照人类的需求和期望进化的核心步骤,因此受到学术界和产业界的高度关注。
本文第一作者为香港大学博士研究生谢知晖,主要研究兴趣为大模型对齐与强化学习。
前段时间冲上热搜的问题「9.11比9.9大吗?」,让几乎所有LLM集体翻车。看似热度已过,但AI界大佬Andrej Karpathy却从中看出了当前大模型技术的本质缺陷,以及未来的潜在改进方向。