
把RLHF带给VLA模型!通过偏好对齐来优化机器人策略,代码已开源
把RLHF带给VLA模型!通过偏好对齐来优化机器人策略,代码已开源近年来,视觉-语言-动作模型(Vision-Language-Action, VLA)在诸多机器人任务上取得了显著的进展,但它们仍面临一些关键问题,例如由于仅依赖从成功的执行轨迹中进行行为克隆,导致对新任务的泛化能力较差。
近年来,视觉-语言-动作模型(Vision-Language-Action, VLA)在诸多机器人任务上取得了显著的进展,但它们仍面临一些关键问题,例如由于仅依赖从成功的执行轨迹中进行行为克隆,导致对新任务的泛化能力较差。
我们或许可以称o3是「更高级的推理AI」,而远不是AGI。 昨天凌晨,OpenAI 连续 12 天发布会终于落下了帷幕,并甩出了最强大的推理模型 o3 系列!
丸辣!原来AI有能力把研究员、用户都蒙在鼓里: 在训练阶段,会假装遵守训练目标;训练结束不受监控了,就放飞自我。 还表现出区别对待免费用户和付费用户的行为。
近年来,随着 Stable Diffusion 等文本到图像生成模型的发展,这些技术使得在保留内容准确性的同时,实现出色的风格转换成为可能。这项技术在数字绘画、广告和游戏设计等领域具有重要的应用价值。
利用概念激活向量破解大模型的安全对齐,揭示LLM重要安全风险漏洞。
网络智能体旨在让一切基于网络功能的任务自动发生。比如你告诉智能体你的预算,它可以帮你预订酒店。既拥有海量常识,又能做长期规划的大语言模型(LLM),自然成为了智能体常用的基础模块。
来自中科大等单位的研究团队共同提出了用来有效评估多模态大模型预训练质量的评估指标 Modality Integration Rate(MIR),能够快速准确地评估多模态预训练的模态对齐程度。
随着人工智能大模型的能力日益强大,如何让其行为和目标同人类的价值、偏好、意图之间实现协调一致,即人机对齐(human-AI alignment)问题,变得越发重要。
让 AI 与人类价值观对齐一直都是 AI 领域的一大重要且热门的研究课题,甚至很可能是 OpenAI 高层分裂的一大重要原因 ——CEO 萨姆・奥特曼似乎更倾向于更快实现 AI 商业化,而以伊尔亚・苏茨克维(Ilya Sutskever)为代表的一些研究者则更倾向于先保证 AI 安全。
如何全模态大模型与人类的意图相对齐,已成为一个极具前瞻性且至关重要的挑战。