
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念「对齐」人类
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念「对齐」人类DeepMind最近的研究提出了一种新框架AligNet,通过模拟人类判断来训练教师模型,并将类人结构迁移到预训练的视觉基础模型中,从而提高模型在多种任务上的表现,增强了模型的泛化性和鲁棒性,为实现更类人的人工智能系统铺平了道路。
DeepMind最近的研究提出了一种新框架AligNet,通过模拟人类判断来训练教师模型,并将类人结构迁移到预训练的视觉基础模型中,从而提高模型在多种任务上的表现,增强了模型的泛化性和鲁棒性,为实现更类人的人工智能系统铺平了道路。
近年来,大模型的高速发展极大地改变了人工智能的格局。对齐(Alignment) 是使大模型的行为符合人类意图和价值观,引导大模型按照人类的需求和期望进化的核心步骤,因此受到学术界和产业界的高度关注。
本文第一作者为香港大学博士研究生谢知晖,主要研究兴趣为大模型对齐与强化学习。
前段时间冲上热搜的问题「9.11比9.9大吗?」,让几乎所有LLM集体翻车。看似热度已过,但AI界大佬Andrej Karpathy却从中看出了当前大模型技术的本质缺陷,以及未来的潜在改进方向。
大模型展现出了卓越的指令跟从和任务泛化的能力,这种独特的能力源自 LLMs 在训练中使用了指令跟随数据以及人类反馈强化学习(RLHF)。
华盛顿大学和Allen AI最近发表的论文提出了一种新颖有趣的数据合成方法。他们发现,充分利用LLM的自回归特性,可以引导模型自动生成高质量的指令微调数据。
OpenAI超级对齐团队遗作:两个大模型博弈一番,输出更好懂了
让大小模型相互博弈,就能实现生成内容可读性的提升!
当我们不停在CoT等领域大下苦功、试图提升LLM推理准确性的同时,OpenAI的对齐团队从另一个角度发现了华点——除了准确性,生成答案的清晰度、可读性和可验证性也同样重要。
以发展的眼光看待价值对齐问题。