本文主要内容为提示词工程师的工作实际经验和感悟。详人所略,略人所详。Prompt领域的优秀教程越来越多,基础知识可以参见社区先辈刘海同学:[23.08] 网上疯传的「AI 提示词工程师」到底是什么?
本文主要内容为提示词工程师的工作实际经验和感悟。详人所略,略人所详。Prompt领域的优秀教程越来越多,基础知识可以参见社区先辈刘海同学:[23.08] 网上疯传的「AI 提示词工程师」到底是什么?
迄今,全球超 200 个模型基于来自 OpenBMB 开源社区的 Ultra Series 数据集(面壁 Ultra 对齐数据集)对齐,数据集包括 UltraFeedback 和 UltraChat,共计月均下载量超 100 万。
大模型对齐新方法,让数学推理能力直接提升9%。
在目前的模型训练范式中,偏好数据的的获取与使用已经成为了不可或缺的一环。在训练中,偏好数据通常被用作对齐(alignment)时的训练优化目标,如基于人类或 AI 反馈的强化学习(RLHF/RLAIF)或者直接偏好优化(DPO),而在模型评估中,由于任务的复杂性且通常没有标准答案,则通常直接以人类标注者或高性能大模型(LLM-as-a-Judge)的偏好标注作为评判标准。
随着大语言模型(LLMs)在近年来取得显著进展,它们的能力日益增强,进而引发了一个关键的问题:如何确保他们与人类价值观对齐,从而避免潜在的社会负面影响?
OPO 无需训练即可实现实时动态对齐,而且因其即插即用的特性,适用于所有的开源与闭源大模型。
复旦团队进一步挖掘 RLHF 的潜力,重点关注奖励模型(Reward Model)在面对实际应用挑战时的表现和优化途径。
ChatGPT、OpenAI这两个名字无疑是2023年科技圈最为炙手可热的存在,但投入AI大模型赛道的显然远远不止OpenAI一家,例如谷歌有Gemini、Meta有开源的Llama 2、亚马逊也有Titan。
“AI会塑造现世的魔王,而被魔王上身的人自己也不知道”。陈伟星如是形容困在“信息茧房”中的人。
2023年,以ChatGPT为代表的大型语言模型(LLM)集中爆发,让各界都看到人工智能全新的可能性。但期冀总是与担忧并存,随着大模型在各领域的应用深化,已经沉寂许久的“AI威胁论”又开始甚嚣尘上。在漫长的技术史中,技术恐惧如同摆脱不了的阴影,总是与技术发展随行。