
陈丹琦新作:大模型强化学习的第三条路,8B小模型超越GPT-4o
陈丹琦新作:大模型强化学习的第三条路,8B小模型超越GPT-4o结合RLHF+RLVR,8B小模型就能超越GPT-4o、媲美Claude-3.7-Sonnet。陈丹琦新作来了。他们提出了一个结合RLHF和RLVR优点的方法,RLMT(Reinforcement Learning with Model-rewarded Thinking,基于模型奖励思维的强化学习)。
结合RLHF+RLVR,8B小模型就能超越GPT-4o、媲美Claude-3.7-Sonnet。陈丹琦新作来了。他们提出了一个结合RLHF和RLVR优点的方法,RLMT(Reinforcement Learning with Model-rewarded Thinking,基于模型奖励思维的强化学习)。
打破思维惯性,「小模型」也能安全又强大!北大-360联合实验室发布TinyR1-32B模型,以仅20k数据的微调,实现了安全性能的里程碑式突破,并兼顾出色的推理与通用能力。
Jet-Nemotron是英伟达最新推出的小模型系列(2B/4B),由全华人团队打造。其核心创新在于提出后神经架构搜索(PostNAS)与新型线性注意力模块JetBlock,实现了从预训练Transformer出发的高效架构优化。
大模型再强,也躲不过上下文限制的「蕉绿」!MIT等团队推出的一套组合拳——TIM和TIMRUN,轻松突破token天花板,让8b小模型也能实现大杀四方。
英伟达发布全新架构9B模型,以Mamba-Transformer混合架构实现推理吞吐量最高提升6倍,对标Qwen3-8B并在数学、代码、推理与长上下文任务中表现持平或更优。
大模型OUT,小模型才是智能体的未来! 这可不是标题党,而是英伟达最新论文观点: 在Agent任务中,大语言模型经常处理重复、专业化的子任务,这让它们消耗大量计算资源,且成本高、效率低、灵活性差。
哦豁,OpenAI奥特曼又痛失一员大将。 Kevin Lu,领导4o-mini发布,并参与o1-mini、o3发布,主要研究强化学习、小模型和合成数据。
一句话概括,还在嫌弃RAG太慢?这帮研究员直接把检索数据库"蒸馏"成了一个小模型,实现了不检索的检索增强,堪称懒人福音。
27M小模型超越o3-mini-high和DeepSeek-R1!推理还不靠思维链。 开发者是那位拒绝了马斯克、还要挑战Transformer的00后清华校友,Sapient Intelligence的创始人王冠。
刚刚,腾讯混元团队宣布一口气开源了 4 款小模型 —— 最大的只有 7B,另外还包括 4B、1.8B 和 0.5B 三个型号。