2M大小模型定义表格理解极限,清华大学崔鹏团队开源LimiX-2M
2M大小模型定义表格理解极限,清华大学崔鹏团队开源LimiX-2M提到 AI 的突破,人们首先想到的往往是大语言模型(LLM):写代码、生成文本、甚至推理多模态内容,几乎重塑了通用智能的边界。但在一个看似 “简单” 的领域 —— 结构化表格数据上,这些强大的模型却频频失手。
提到 AI 的突破,人们首先想到的往往是大语言模型(LLM):写代码、生成文本、甚至推理多模态内容,几乎重塑了通用智能的边界。但在一个看似 “简单” 的领域 —— 结构化表格数据上,这些强大的模型却频频失手。
如果有人告诉你:不用分阶段做强化学习、不搞课程学习、不动态调参,只用最基础的 RL 配方就能达到小模型数学推理能力 SOTA,你信吗?
目前,最先进的对齐方法是使用知识蒸馏(Knowledge Distillation, KD)在所有 token 上最小化 KL 散度。然而,最小化全局 KL 散度并不意味着 token 的接受率最大化。由于小模型容量受限,草稿模型往往难以完整吸收目标模型的知识,导致直接使用蒸馏方法的性能提升受限。在极限场景下,草稿模型和目标模型的巨大尺寸差异甚至可能导致训练不收敛。
随着移动智能技术的飞速迭代,手机端聚合服务的AI“超级入口” 正成为行业竞争的新焦点——
这篇论文提出了一种颠覆性的协作模式,即通过强化学习训练一个“小模型”作为智能代理(Agent),让它自动学会如何写出完美的Prompt,一步步引导任何一个“大模型”完成复杂推理,实现了真正的“AI指挥AI”。
吴恩达指出,当下大模型的卷生卷死,谁是赢家不重要。关键的是谁能构建可信的AI应用,谁才能成为真正塑造未来之人,顺便成为下一个通过AI财富自由者。
斯坦福等新框架,用在线强化学习让智能体系统“以小搏大”,领先GPT-4o—— AgentFlow,是一种能够在线优化智能体系统的新范式,可以持续提升智能体系统对于复杂问题的推理能力。
针对「大模型推理速度慢,生成token高延迟」的难题,莫纳什、北航、浙大等提出R-Stitch框架,通过大小模型动态协作,衡量任务风险后灵活选择:简单任务用小模型,关键部分用大模型。实验显示推理速度提升最高4倍,同时保证高准确率。
“如果一个问题只需小模型就能回答,为什么还要让更贵的大模型去思考?”
纽约时间 2025 年 10 月 9 日早上 9 点,Elastic (NYSE: ESTC) 在其官网宣布完成了对 Jina AI 的收购。ina AI 原 CEO 肖涵将在 Elastic 担任 VP of AI,负责 AI 方向的战略和研发。由肖涵带领的核心Jina团队将继续在向量模型、重排器、Reader 和小模型上推进搜索 AI 的发展。