AI资讯新闻榜单内容搜索-强化学习

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
搜索: 强化学习
强化学习Scaling Law错了?无需蒸馏,数据量只要1/6,效果还更好

强化学习Scaling Law错了?无需蒸馏,数据量只要1/6,效果还更好

强化学习Scaling Law错了?无需蒸馏,数据量只要1/6,效果还更好

强化学习训练数据越多,模型推理能力就越强?新研究提出LIM方法,揭示提升推理能力的关键在于优化数据质量,而不是数据规模。该方法在小模型上优势尽显。从此,强化学习Scaling Law可能要被改写了!

来自主题: AI技术研报
5532 点击    2025-02-18 20:07
华人研究团队揭秘:DeepSeek-R1-Zero或许并不存在「顿悟时刻」

华人研究团队揭秘:DeepSeek-R1-Zero或许并不存在「顿悟时刻」

华人研究团队揭秘:DeepSeek-R1-Zero或许并不存在「顿悟时刻」

一项非常鼓舞人心的发现是:DeepSeek-R1-Zero 通过纯强化学习(RL)实现了「顿悟」。在那个瞬间,模型学会了自我反思等涌现技能,帮助它进行上下文搜索,从而解决复杂的推理问题。

来自主题: AI技术研报
7539 点击    2025-02-07 15:51
多智能体强化学习算法评估Hard模式来了!浙大、南栖仙策联手推出

多智能体强化学习算法评估Hard模式来了!浙大、南栖仙策联手推出

多智能体强化学习算法评估Hard模式来了!浙大、南栖仙策联手推出

在人工智能领域,具有挑战性的模拟环境对于推动多智能体强化学习(MARL)领域的发展至关重要。在合作式多智能体强化学习环境中,大多数算法均通过星际争霸多智能体挑战(SMAC)作为实验环境来验证算法的收敛和样本利用率。

来自主题: AI技术研报
6989 点击    2025-01-05 20:51
轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机

轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机

轨迹跟踪误差直降50%,清华汪玉团队强化学习策略秘籍搞定无人机

控制无人机执行敏捷、高机动性的行为是一项颇具挑战的任务。传统的控制方法,比如 PID 控制器和模型预测控制(MPC),在灵活性和效果上往往有所局限。而近年来,强化学习(RL)在机器人控制领域展现出了巨大的潜力。通过直接将观测映射为动作,强化学习能够减少对系统动力学模型的依赖。

来自主题: AI技术研报
3675 点击    2024-12-28 11:35
清华、智谱团队:探索 RLHF 的 scaling laws

清华、智谱团队:探索 RLHF 的 scaling laws

清华、智谱团队:探索 RLHF 的 scaling laws

目前关于 RLHF 的 scaling(扩展)潜力研究仍然相对缺乏,尤其是在模型大小、数据组成和推理预算等关键因素上的影响尚未被系统性探索。 针对这一问题,来自清华大学与智谱的研究团队对 RLHF 在 LLM 中的 scaling 性能进行了全面研究,并提出了优化策略。

来自主题: AI技术研报
8365 点击    2024-12-24 14:56
LeCun八年前神预言,大模型路线再颠覆?OpenAI宣告:强化学习取得稳定性突破

LeCun八年前神预言,大模型路线再颠覆?OpenAI宣告:强化学习取得稳定性突破

LeCun八年前神预言,大模型路线再颠覆?OpenAI宣告:强化学习取得稳定性突破

只需几十个样本即可训练专家模型,强化微调RLF能掀起强化学习热潮吗?具体技术实现尚不清楚,AI2此前开源的RLVR或许在技术思路上存在相似之处。

来自主题: AI资讯
6888 点击    2024-12-23 15:58
NeurIPS Spotlight | 基于信息论,决策模型有了全新预训练范式统一框架

NeurIPS Spotlight | 基于信息论,决策模型有了全新预训练范式统一框架

NeurIPS Spotlight | 基于信息论,决策模型有了全新预训练范式统一框架

现如今,以 GPT 为代表的大语言模型正深刻影响人们的生产与生活,但在处理很多专业性和复杂程度较高的问题时仍然面临挑战。在诸如药物发现、自动驾驶等复杂场景中,AI 的自主决策能力是解决问题的关键,而如何进行决策大模型的高效训练目前仍然是开放性的难题。

来自主题: AI技术研报
7063 点击    2024-12-18 09:47
突破!自然语言强化学习(NLRL):一个可处理语言反馈的强化学习框架

突破!自然语言强化学习(NLRL):一个可处理语言反馈的强化学习框架

突破!自然语言强化学习(NLRL):一个可处理语言反馈的强化学习框架

在人工智能发展史上,强化学习 (RL) 凭借其严谨的数学框架解决了众多复杂的决策问题,从围棋、国际象棋到机器人控制等领域都取得了突破性进展。

来自主题: AI技术研报
6947 点击    2024-12-07 15:11