AI资讯新闻榜单内容搜索-强化学习

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 强化学习
手把手带你入门机器人学习,HuggingFace联合牛津大学新教程开源SOTA资源库

手把手带你入门机器人学习,HuggingFace联合牛津大学新教程开源SOTA资源库

手把手带你入门机器人学习,HuggingFace联合牛津大学新教程开源SOTA资源库

HuggingFace 与牛津大学的研究者们为想要进入现代机器人学习领域的新人们提供了了一份极其全面易懂的技术教程。这份教程将带领读者探索现代机器人学习的全景,从强化学习和模仿学习的基础原理出发,逐步走向能够在多种任务甚至不同机器人形态下运行的通用型、语言条件模型。

来自主题: AI技术研报
8358 点击    2025-10-26 16:28
AI在线强化学习“边做边学”,斯坦福团队让7B小模型性能飙升,甚至超越GPT-4o

AI在线强化学习“边做边学”,斯坦福团队让7B小模型性能飙升,甚至超越GPT-4o

AI在线强化学习“边做边学”,斯坦福团队让7B小模型性能飙升,甚至超越GPT-4o

斯坦福等新框架,用在线强化学习让智能体系统“以小搏大”,领先GPT-4o—— AgentFlow,是一种能够在线优化智能体系统的新范式,可以持续提升智能体系统对于复杂问题的推理能力。

来自主题: AI技术研报
5202 点击    2025-10-25 14:03
大模型推理学习新范式!ExGRPO框架:从盲目刷题到聪明复盘

大模型推理学习新范式!ExGRPO框架:从盲目刷题到聪明复盘

大模型推理学习新范式!ExGRPO框架:从盲目刷题到聪明复盘

大模型在强化学习过程中,终于知道什么经验更宝贵了! 来自上海人工智能实验室、澳门大学、南京大学和香港中文大学的研究团队,最近提出了一套经验管理和学习框架ExGRPO—— 通过科学地识别、存储、筛选和学习有价值的经验,让大模型在优化推理能力的道路上,走得更稳、更快、更远。

来自主题: AI技术研报
5303 点击    2025-10-23 15:42
智源开源EditScore:为图像编辑解锁在线强化学习的无限可能

智源开源EditScore:为图像编辑解锁在线强化学习的无限可能

智源开源EditScore:为图像编辑解锁在线强化学习的无限可能

随着多模态大模型的不断演进,指令引导的图像编辑(Instruction-guided Image Editing)技术取得了显著进展。然而,现有模型在遵循复杂、精细的文本指令方面仍面临巨大挑战,往往需要用户进行多次尝试和手动筛选,难以实现稳定、高质量的「一步到位」式编辑。

来自主题: AI技术研报
9079 点击    2025-10-23 12:28
X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习

X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习

X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习

年初的 DeepSeek-R1,带来了大模型强化学习(RL)的火爆。无论是数学推理、工具调用,还是多智能体协作,GRPO(Group Relative Policy Optimization)都成了最常见的 RL 算法。

来自主题: AI技术研报
5773 点击    2025-10-23 11:41
清华、快手提出AttnRL:让大模型用「注意力」探索

清华、快手提出AttnRL:让大模型用「注意力」探索

清华、快手提出AttnRL:让大模型用「注意力」探索

从 AlphaGo 战胜人类棋手,到 GPT 系列展现出惊人的推理与语言能力,强化学习(Reinforcement Learning, RL)一直是让机器「学会思考」的关键驱动力。

来自主题: AI技术研报
6879 点击    2025-10-22 11:46
AGI前夜重磅:RL突破模型「认知上限」,真·学习发生了!

AGI前夜重磅:RL突破模型「认知上限」,真·学习发生了!

AGI前夜重磅:RL突破模型「认知上限」,真·学习发生了!

UC Berkeley、UW、AI2 等机构联合团队最新工作提出:在恰当的训练范式下,强化学习(RL)不仅能「打磨」已有能力,更能逼出「全新算法」级的推理模式。他们构建了一个专门验证这一命题的测试框架 DELTA,并观察到从「零奖励」到接近100%突破式跃迁的「RL grokking」现象。

来自主题: AI技术研报
7003 点击    2025-10-22 11:33
RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。

来自主题: AI技术研报
5555 点击    2025-10-21 15:53
AGILE:视觉学习新范式!自监督+交互式强化学习助力VLMs感知与推理全面提升

AGILE:视觉学习新范式!自监督+交互式强化学习助力VLMs感知与推理全面提升

AGILE:视觉学习新范式!自监督+交互式强化学习助力VLMs感知与推理全面提升

现有视觉语言大模型(VLMs)在多模态感知和推理任务上仍存在明显短板:1. 对图像中的细粒度视觉信息理解有限,视觉感知和推理能力未被充分激发;2. 强化学习虽能带来改进,但缺乏高质量、易扩展的 RL 数据。

来自主题: AI技术研报
6260 点击    2025-10-21 15:30