AI资讯新闻榜单内容搜索-强化学习

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
搜索: 强化学习
率先突破大规模多类数据损坏问题!中科大离线强化学习新方式入选NeurIPS 2024

率先突破大规模多类数据损坏问题!中科大离线强化学习新方式入选NeurIPS 2024

率先突破大规模多类数据损坏问题!中科大离线强化学习新方式入选NeurIPS 2024

机器人控制和自动驾驶的离线数据损坏问题有解了! 中科大王杰教授团队 (MIRA Lab) 提出了一种变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性。

来自主题: AI技术研报
3091 点击    2024-10-20 11:43
TPAMI | 安全强化学习方法、理论与应用综述,慕工大、同济、伯克利等深度解析

TPAMI | 安全强化学习方法、理论与应用综述,慕工大、同济、伯克利等深度解析

TPAMI | 安全强化学习方法、理论与应用综述,慕工大、同济、伯克利等深度解析

现实世界中的强化学习在应用过程中也面临着巨大的挑战,尤其是如何保证系统的安全性。为了解决这一问题,安全强化学习(Safe Reinforcement Learning, Safe RL)应运而生,成为当前学术界和工业界关注的焦点。

来自主题: AI技术研报
3468 点击    2024-10-08 17:23
从数据增强的隐藏作用出发,揭示视觉强化学习可塑性损失的独特机制

从数据增强的隐藏作用出发,揭示视觉强化学习可塑性损失的独特机制

从数据增强的隐藏作用出发,揭示视觉强化学习可塑性损失的独特机制

Sutton 等研究人员近期在《Nature》上发表的研究《Loss of Plasticity in Deep Continual Learning》揭示了一个重要发现:在持续学习环境中,标准深度学习方法的表现竟不及浅层网络。研究指出,这一现象的主要原因是 "可塑性损失"(Plasticity Loss):深度神经网络在面对非平稳的训练目标持续更新时,会逐渐丧失从新数据中学习的能力。

来自主题: AI资讯
3514 点击    2024-09-29 14:39
3D打印新突破!曼大等提出DQN多样化图形路径规划器:锐角转弯降低超93%,热变形减少25%

3D打印新突破!曼大等提出DQN多样化图形路径规划器:锐角转弯降低超93%,热变形减少25%

3D打印新突破!曼大等提出DQN多样化图形路径规划器:锐角转弯降低超93%,热变形减少25%

香港中文大学等机构的研究团队通过深度强化学习(DQN)开发了一种3D打印路径规划器,有效提升了打印效率和精度,为智能制造开辟了新途径。

来自主题: AI技术研报
7439 点击    2024-09-27 19:28
完全使用「自生成数据」实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%

完全使用「自生成数据」实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%

完全使用「自生成数据」实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%

Google DeepMind的SCoRe方法通过在线多轮强化学习,显著提升了大型语言模型在没有外部输入的情况下的自我修正能力。该方法在MATH和HumanEval基准测试中,分别将自我修正性能提高了15.6%和9.1%。

来自主题: AI技术研报
9436 点击    2024-09-27 19:26
强化学习,正在引领AI跨越LLM之谷

强化学习,正在引领AI跨越LLM之谷

强化学习,正在引领AI跨越LLM之谷

OpenAI的研究科学家布朗(Noam Brown),这两天在他的自我介绍中,加上了一条:OpanAI o1的联合创始人。

来自主题: AI资讯
2905 点击    2024-09-18 10:56
北大对齐团队独家解读:OpenAI o1开启「后训练」时代强化学习新范式

北大对齐团队独家解读:OpenAI o1开启「后训练」时代强化学习新范式

北大对齐团队独家解读:OpenAI o1开启「后训练」时代强化学习新范式

OpenAI o1 在数学、代码、长程规划等问题取得显著的进步。一部分业内人士分析其原因是由于构建足够庞大的逻辑数据集 <问题,明确的正确答案> ,再加上类似 AlphaGo 中 MCTS 和 RL 的方法直接搜索,只要提供足够的计算量用于搜索,总可以搜到最后的正确路径。然而,这样只是建立起问题和答案之间的更好的联系,如何泛化到更复杂的问题场景,技术远不止这么简单。

来自主题: AI技术研报
6012 点击    2024-09-15 14:41
清华、北大等发布Self-Play强化学习最新综述

清华、北大等发布Self-Play强化学习最新综述

清华、北大等发布Self-Play强化学习最新综述

本文作者来自于清华大学电子工程系,北京大学人工智能研究院、第四范式、腾讯和清华-伯克利深圳学院。其中第一作者张瑞泽为清华大学硕士,主要研究方向为博弈算法。通讯作者为清华大学电子工程系汪玉教授、于超博后和第四范式研究员黄世宇博士。

来自主题: AI技术研报
7265 点击    2024-09-10 11:48