AI资讯新闻榜单内容搜索-强化学习

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
搜索: 强化学习
流式深度学习终于奏效了!强化学习之父Richard Sutton力荐

流式深度学习终于奏效了!强化学习之父Richard Sutton力荐

流式深度学习终于奏效了!强化学习之父Richard Sutton力荐

自然智能(Natural intelligence)过程就像一条连续的流,可以实时地感知、行动和学习。流式学习是 Q 学习和 TD 等经典强化学习 (RL) 算法的运作方式,它通过使用最新样本而不存储样本来模仿自然学习。这种方法也非常适合资源受限、通信受限和隐私敏感的应用程序。

来自主题: AI技术研报
5653 点击    2024-11-29 15:18
率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

率先解决多类数据同时受损,中科大MIRA团队TRACER入选NeurIPS 2024:强鲁棒性的离线变分贝叶斯强化学习

近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。

来自主题: AI技术研报
2783 点击    2024-11-16 15:13
具身智能基础——强化学习

具身智能基础——强化学习

具身智能基础——强化学习

强化学习中的核心概念是智能体(Agent)和环境(Environment)之间的交互。智能体通过观察环境的状态,选择动作来改变环境,环境根据动作反馈出奖励和新的状态。

来自主题: AI技术研报
3657 点击    2024-11-11 20:56
率先突破大规模多类数据损坏问题!中科大离线强化学习新方式入选NeurIPS 2024

率先突破大规模多类数据损坏问题!中科大离线强化学习新方式入选NeurIPS 2024

率先突破大规模多类数据损坏问题!中科大离线强化学习新方式入选NeurIPS 2024

机器人控制和自动驾驶的离线数据损坏问题有解了! 中科大王杰教授团队 (MIRA Lab) 提出了一种变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性。

来自主题: AI技术研报
3200 点击    2024-10-20 11:43
TPAMI | 安全强化学习方法、理论与应用综述,慕工大、同济、伯克利等深度解析

TPAMI | 安全强化学习方法、理论与应用综述,慕工大、同济、伯克利等深度解析

TPAMI | 安全强化学习方法、理论与应用综述,慕工大、同济、伯克利等深度解析

现实世界中的强化学习在应用过程中也面临着巨大的挑战,尤其是如何保证系统的安全性。为了解决这一问题,安全强化学习(Safe Reinforcement Learning, Safe RL)应运而生,成为当前学术界和工业界关注的焦点。

来自主题: AI技术研报
3566 点击    2024-10-08 17:23
从数据增强的隐藏作用出发,揭示视觉强化学习可塑性损失的独特机制

从数据增强的隐藏作用出发,揭示视觉强化学习可塑性损失的独特机制

从数据增强的隐藏作用出发,揭示视觉强化学习可塑性损失的独特机制

Sutton 等研究人员近期在《Nature》上发表的研究《Loss of Plasticity in Deep Continual Learning》揭示了一个重要发现:在持续学习环境中,标准深度学习方法的表现竟不及浅层网络。研究指出,这一现象的主要原因是 "可塑性损失"(Plasticity Loss):深度神经网络在面对非平稳的训练目标持续更新时,会逐渐丧失从新数据中学习的能力。

来自主题: AI资讯
3643 点击    2024-09-29 14:39
3D打印新突破!曼大等提出DQN多样化图形路径规划器:锐角转弯降低超93%,热变形减少25%

3D打印新突破!曼大等提出DQN多样化图形路径规划器:锐角转弯降低超93%,热变形减少25%

3D打印新突破!曼大等提出DQN多样化图形路径规划器:锐角转弯降低超93%,热变形减少25%

香港中文大学等机构的研究团队通过深度强化学习(DQN)开发了一种3D打印路径规划器,有效提升了打印效率和精度,为智能制造开辟了新途径。

来自主题: AI技术研报
7560 点击    2024-09-27 19:28
完全使用「自生成数据」实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%

完全使用「自生成数据」实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%

完全使用「自生成数据」实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%

Google DeepMind的SCoRe方法通过在线多轮强化学习,显著提升了大型语言模型在没有外部输入的情况下的自我修正能力。该方法在MATH和HumanEval基准测试中,分别将自我修正性能提高了15.6%和9.1%。

来自主题: AI技术研报
9609 点击    2024-09-27 19:26