OpenAI o1 在数学、代码、长程规划等问题取得显著的进步。一部分业内人士分析其原因是由于构建足够庞大的逻辑数据集 <问题,明确的正确答案> ,再加上类似 AlphaGo 中 MCTS 和 RL 的方法直接搜索,只要提供足够的计算量用于搜索,总可以搜到最后的正确路径。然而,这样只是建立起问题和答案之间的更好的联系,如何泛化到更复杂的问题场景,技术远不止这么简单。
OpenAI o1 在数学、代码、长程规划等问题取得显著的进步。一部分业内人士分析其原因是由于构建足够庞大的逻辑数据集 <问题,明确的正确答案> ,再加上类似 AlphaGo 中 MCTS 和 RL 的方法直接搜索,只要提供足够的计算量用于搜索,总可以搜到最后的正确路径。然而,这样只是建立起问题和答案之间的更好的联系,如何泛化到更复杂的问题场景,技术远不止这么简单。
本文作者来自于清华大学电子工程系,北京大学人工智能研究院、第四范式、腾讯和清华-伯克利深圳学院。其中第一作者张瑞泽为清华大学硕士,主要研究方向为博弈算法。通讯作者为清华大学电子工程系汪玉教授、于超博后和第四范式研究员黄世宇博士。
近日,由北京大学人工智能研究院杨耀东课题组牵头完成的研究成果 ——「大规模多智能体系统的高效强化学习」在人工智能顶级学术期刊 Nature Machine Intelligence 上发表。
又有AI初创公司创始人卖身大厂——
「相比于强化学习(RL),我确实更喜欢模型预测控制(MPC)。至少从 2016 年起,我就一直在强调这一点。强化学习在学习任何新任务时都需要进行极其大量的尝试。相比之下,模型预测控制是零样本的:如果你有一个良好的世界模型和一个良好的任务目标,模型预测控制就可以在不需要任何特定任务学习的情况下解决新任务。这就是规划的魔力。这并不意味着强化学习是无用的,但它的使用应该是最后的手段。」
在复杂的物理世界中,人型机器人的全身控制一直是个难题,现有的强化学习做出的效果有时会比较抽象。近日,LeCun参与的一项工作给出了基于数据驱动的全新解决方案。
大语言模型(LLM),通过在海量数据集上的训练,展现了超强的多任务学习、通用世界知识目标规划以及推理能力
分布式强化学习是一个综合的研究子领域,需要深度强化学习算法以及分布式系统设计的互相感知和协同。考虑到 DDRL 的巨大进步,我们梳理形成了 DDRL 技术的展历程、挑战和机遇的系列文章。
SPF算法是一种基于状态序列频域预测的表征学习方法,利用状态序列的频域分布来显式提取状态序列数据中的趋势性和规律性信息,从而辅助表征高效地提取到长期未来信息。