AI正在偷走白领工作!OpenAI狂砸10亿教AI上班,你的完美继任者即将上岗
AI正在偷走白领工作!OpenAI狂砸10亿教AI上班,你的完美继任者即将上岗Anthropic、OpenAI等大厂,正计划每年投入10亿美元,教会AI像人类一样工作。他们不仅为AI提供强化学习环境(RL environment,简称gym),还让AI「偷师」各领域专家。OpenAI高管预言,未来「整个经济」,将在某种程度上变成一台「RL机器」。
Anthropic、OpenAI等大厂,正计划每年投入10亿美元,教会AI像人类一样工作。他们不仅为AI提供强化学习环境(RL environment,简称gym),还让AI「偷师」各领域专家。OpenAI高管预言,未来「整个经济」,将在某种程度上变成一台「RL机器」。
行业首个具备“高刷”视频理解能力的多模态模型MiniCPM-V 4.5的技术报告正式发布!报告提出统一的3D-Resampler架构实现高密度视频压缩、面向文档的统一OCR和知识学习范式、可控混合快速/深度思考的多模态强化学习三大技术。
浙江大学与通义实验室Mobile-Agent团队在UI-R1的基础上,推出全新研究成果——UI-S1,提出了一种名为半在线强化学习(Semi-online Reinforcement Learning)的创新训练范式。
监督微调(SFT)和强化学习(RL)微调是大模型后训练常见的两种手段。通过强化学习微调大模型在众多 NLP 场景都取得了较好的进展,但是在文本分类场景,强化学习未取得较大的进展,其表现往往不如监督学习。
CBD 算法则是快手商业化算法团队在本月初公布的新方法,全名 Causal auto-Bidding method based on Diffusion completer-aligner,即基于扩散式补全器-对齐器的因果自动出价方法。
近期,北京大学与字节团队提出了名为 BranchGRPO 的新型树形强化学习方法。不同于顺序展开的 DanceGRPO,BranchGRPO 通过在扩散反演过程中引入分叉(branching)与剪枝(pruning),让多个轨迹共享前缀、在中间步骤分裂,并通过逐层奖励融合实现稠密反馈。
最近,美团在AI开源赛道上在猛踩加速。今天,在开源其首款大语言模型仅仅24天后,美团又开源了其首款自研推理模型LongCat-Flash-Thinking。与其基础模型LongCat-Flash类似,效率也是LongCat-Flash-Thinking的最大特点。美团在技术报告中透露,LongCat-Flash-Thinking在自研的DORA强化学习基础设施完成训练
Cursor Tab 是 Cursor 的核心功能之一,它通过分析开发者的编码行为,智能预测并推荐后续代码,开发者仅需按下 Tab 键即可采纳。然而,它也面临着一个 AI 普遍存在的难题:「过度热情」。有时,它提出的建议不仅毫无用处,甚至会打断开发者的思路。
强化学习之父、2024 年 ACM 图灵奖得主 Richard Sutton 曾指出,人工智能正在迈入「经验时代」—— 在这个时代,真正的智能不再仅仅依赖大量标注数据的监督学习,而是来源于在真实环境中主动探索、不断积累经验的能力。
过去几年,大语言模型(LLM)的训练大多依赖于基于人类或数据偏好的强化学习(Preference-based Reinforcement Fine-tuning, PBRFT):输入提示、输出文本、获得一个偏好分数。这一范式催生了 GPT-4、Llama-3 等成功的早期大模型,但局限也日益明显:缺乏长期规划、环境交互与持续学习能力。