
奖励是假的,能让Qwen提升25%性能却是真的!
奖励是假的,能让Qwen提升25%性能却是真的!即使RLVR(可验证奖励强化学习)使用错误的奖励信号,Qwen性能也能得到显著提升?
即使RLVR(可验证奖励强化学习)使用错误的奖励信号,Qwen性能也能得到显著提升?
信息检索能力对提升大语言模型 (LLMs) 的推理表现至关重要,近期研究尝试引入强化学习 (RL) 框架激活 LLMs 主动搜集信息的能力,但现有方法在训练过程中面临两大核心挑战:
在日益强调“思维能力”的大语言模型时代,如何让模型在“难”的问题上展开推理,而不是无差别地“想个不停”,成为当前智能推理研究的重要课题。
仅需一个强化学习(RL)框架,就能实现视觉任务大统一?
上下文长度达 13 万 token,适用于多段文档综合分析、金融、法律、科研等复杂领域任务。
强化学习 (RL) 显著提升了视觉-语言模型 (VLM) 的推理能力。然而,RL 在推理任务之外的应用,尤其是在目标检测 和目标定位等感知密集型任务中的应用,仍有待深入探索。
推理大模型开卷新方向,阿里开源长文本深度思考模型QwenLong-L1,登上HuggingFace今日热门论文第二。
近年来,思维链在大模型训练和推理中愈发重要。近日,西湖大学 MAPLE 实验室齐国君教授团队首次提出扩散式「发散思维链」—— 一种面向扩散语言模型的新型大模型推理范式。该方法将反向扩散过程中的每一步中间结果都看作大模型的一个「思考」步骤,然后利用基于结果的强化学习去优化整个生成轨迹,最大化模型最终答案的正确率。
别人都在用 X 发帖子,分享新鲜事物,微软副总裁 Nando de Freitas 却有自己的想法:他要在 X 上「开课」,发布一些关于人工智能教育的帖子。该系列会从 LLM 的强化学习开始,然后逐步讲解扩散、流匹配,以及看看这些技术接下来会如何发展。
近年来,LLM 及其多模态扩展(MLLM)在多种任务上的推理能力不断提升。然而, 现有 MLLM 主要依赖文本作为表达和构建推理过程的媒介,即便是在处理视觉信息时也是如此 。