
还在死磕AI咒语?北大-百川搞了个自动提示工程系统PAS
还在死磕AI咒语?北大-百川搞了个自动提示工程系统PAS论文共同第一作者郑淼,来自于周泽南领导的百川对齐团队,毕业于北京大学,研究方向包括大语言模型、多模态学习以及计算机视觉等,曾主导MMFlow等开源项目。
论文共同第一作者郑淼,来自于周泽南领导的百川对齐团队,毕业于北京大学,研究方向包括大语言模型、多模态学习以及计算机视觉等,曾主导MMFlow等开源项目。
提示工程师Riley Goodside小哥,依然在用「Strawberry里有几个r」折磨大模型们,GPT-4o在无限次PUA后,已经被原地逼疯!相比之下,Claude坚决拒绝PUA,是个大聪明。而谷歌最近的论文也揭示了本质原因:LLM没有足够空间,来存储计数向量。
数学大佬陶哲轩力荐,哈佛反向学习法火了:教会AI就是教会自己。
去年 11 月 8 日,新加坡政府科技局(GovTech)组织举办了首届 GPT-4 提示工程(Prompt Engineering)竞赛。数据科学家 Sheila Teo 最终夺冠,成为最终的提示女王(Prompt Queen)。
本文基于数势科技创始人&CEO黎科峰博士,百川智能联合创始人焦可,腾讯研究院副院长刘琼,蓝驰创投投资合伙人、TGO鲲鹏会学员石建平以及实在智能联合创始人、CMO张俊九等五位行业大咖在InfoQ主办的QCon全球软件开发大会的圆桌讨论整理。
当下,如果我们希望通过 ChatGPT 得到有用的信息,就必须知道如何向它发出清晰的指令。为了指导用户写一个好的 prompt,OpenAI 官方曾上线了 Prompt engineering,谷歌和微软也有类似的动作。
Karpathy力推代码生成任务增强流程,让GPT-4在CodeContests从19%提升到44%,不用微调不用新数据集训练,让大模型代码能力大幅提升。
大模型的效果好不好,有时候对齐调优很关键。但近来很多研究开始探索无微调的方法,艾伦人工智能研究所和华盛顿大学的研究者用「免调优」对齐新方法超越了使用监督调优(SFT)和人类反馈强化学习(RLHF)的 LLM 性能。
微软最新研究再次证明了提示工程的威力——无需额外微调,无需专家策划,仅凭提示,GPT-4就能化身“专家”。