视觉语言模型(如 GPT-4o、DALL-E 3)通常拥有数十亿参数,且模型权重不公开,使得传统的白盒优化方法(如反向传播)难以实施。
视觉语言模型(如 GPT-4o、DALL-E 3)通常拥有数十亿参数,且模型权重不公开,使得传统的白盒优化方法(如反向传播)难以实施。
大家对in-context learning(ICL)的能力可能已经很熟悉了,您通常会通过上下文示例就能快速让prompt适应新任务。然而,作为AI应用开发者,您是否思考过:为什么有时候精心设计的few-shot prompt会失效?为什么相同的prompt模式在不同场景下效果差异巨大?
在当前大语言模型(LLM)蓬勃发展的环境下,Prompt工程师们面临着一个两难困境:要么使用像LangChain这样功能强大但学习曲线陡峭的框架,要么选择自动化程度更高DSPy但牺牲了对提示词精确控制的工具。IBM研究院和UC Davis大学最近推出的PDL(Prompt Declaration Language,提示词声明语言)或许打破了这个困境,让AI开发者能真正拿回Prompt的控制权。
如何通过更好的提示工程来提升模型的推理能力,一直是研究人员和工程师们关注的重点。
别说Prompt压缩不重要,你可以不在乎Token成本,但总要考虑内存和LLM响应时间吧?一个显著的问题逐渐浮出水面:随着任务复杂度增加,提示词(Prompt)往往需要变得更长,以容纳更多详细需求、上下文信息和示例。这不仅降低了推理速度,还会增加内存开销,影响用户体验。
在人工智能技术快速发展的今天,大语言模型(LLM)已经展现出惊人的能力。然而,让这些模型生成规范的结构化输出仍然是一个难以攻克的技术难题。不论是在开发自动化工具、构建特定领域的解决方案,还是在进行开发工具集成时,都迫切需要LLM能够产生格式严格、内容可靠的输出。
最近,来自德国奥尔登堡大学计算智能实验室的研究人员Oliver Kramer和Jill Baumann提出了一种创新的方法——认知提示(Cognitive Prompting),通过模拟人类认知过程来提升LLM的问题解决能力。这项研究将在ICLR 2025会议上发表,本文将为各位读者朋友详细解读这一突破性的技术。
近日,来自乔治梅森大学和腾讯AI实验室的研究团队在这一领域取得了重大突破。他们提出了一种名为DOTS(Dynamic Optimal Trajectory Search)的创新方法,通过最佳推理轨迹搜索,显著提升LLMs的动态推理能力。
众所周知,人类的本质是复读机。 我们遵循复读机的自我修养:敲黑板,划重点,重要的事情说三遍。 but,事实上同样的方法对付AI也有奇效!
刚开始接触 AI 的 小白总是会觉得 AI 很难学,提示词也很难,其实写提示词是有方法偷懒的——“用魔法打败魔法”。