AI资讯新闻榜单内容搜索-数据

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 数据
喝点VC|a16z对话心理健康公司Slingshot AI创始人:通过AI扩大心理健康服务的可及性

喝点VC|a16z对话心理健康公司Slingshot AI创始人:通过AI扩大心理健康服务的可及性

喝点VC|a16z对话心理健康公司Slingshot AI创始人:通过AI扩大心理健康服务的可及性

作为一家公司,我们专注于三件事:预训练、微调和对齐。我们使用自有数据集进行预训练,这一点非常关键,而很多公司并不具备这样的能力。然后,我们用专家手工整理的数据进行微调。最有趣、最重要的部分在于对齐,这与简单地寻找“当前最优解”是截然不同的。

来自主题: AI资讯
6002 点击    2025-04-16 14:29
视觉自回归生成理解编辑大一统!北大团队多模态新突破,VARGPT-v1.1训练数据代码全面开源

视觉自回归生成理解编辑大一统!北大团队多模态新突破,VARGPT-v1.1训练数据代码全面开源

视觉自回归生成理解编辑大一统!北大团队多模态新突破,VARGPT-v1.1训练数据代码全面开源

北京大学团队继VARGPT实现视觉理解与生成任务统一之后,再度推出了VARGPT-v1.1版本。该版本进一步提升了视觉自回归模型的能力,不仅在在视觉理解方面有所加强,还在图像生成和编辑任务中达到新的性能高度

来自主题: AI技术研报
6763 点击    2025-04-16 09:44
用IBM的AutoPDL,让Agent的prompt实现数据驱动的自动优化,性能飙升68.9% |重磅

用IBM的AutoPDL,让Agent的prompt实现数据驱动的自动优化,性能飙升68.9% |重磅

用IBM的AutoPDL,让Agent的prompt实现数据驱动的自动优化,性能飙升68.9% |重磅

早在去年10月底IBM推出了PDL声明式提示编程语言,本篇是基于PDL的一种对Agent的自动优化方法,是工业界前沿的解决方案。当你在开发基于大语言模型的Agent产品时,是否曾经在提示模式选择和优化上浪费了大量时间?在各种提示模式(Zero-Shot、CoT、ReAct、ReWOO等)中选择最佳方案,再逐字斟酌提示内容,这一过程不仅耗时,而且常常依赖经验和直觉而非数据驱动的决策。

来自主题: AI技术研报
6114 点击    2025-04-16 09:18
什么样的偏好,才叫好的偏好?——揭秘偏好对齐数据的「三驾马车」

什么样的偏好,才叫好的偏好?——揭秘偏好对齐数据的「三驾马车」

什么样的偏好,才叫好的偏好?——揭秘偏好对齐数据的「三驾马车」

近年来,大语言模型(LLMs)的对齐研究成为人工智能领域的核心挑战之一,而偏好数据集的质量直接决定了对齐的效果。无论是通过人类反馈的强化学习(RLHF),还是基于「RL-Free」的各类直接偏好优化方法(例如 DPO),都离不开高质量偏好数据集的构建。

来自主题: AI技术研报
7110 点击    2025-04-15 14:29
合成数据助力视频生成提速8.5倍,上海AI Lab开源AccVideo

合成数据助力视频生成提速8.5倍,上海AI Lab开源AccVideo

合成数据助力视频生成提速8.5倍,上海AI Lab开源AccVideo

虽然扩散模型在视频生成领域展现出了卓越的性能,但是视频扩散模型通常需要大量的推理步骤对高斯噪声进行去噪才能生成一个视频。这个过程既耗时又耗计算资源。例如,HunyuanVideo [1] 需要 3234 秒才能在单张 A100 上生成 5 秒、720×1280、24fps 的视频。

来自主题: AI技术研报
7994 点击    2025-04-15 10:53
一套算法控制机器人军团!纯模拟环境强化学习,Figure学会像人一样走路

一套算法控制机器人军团!纯模拟环境强化学习,Figure学会像人一样走路

一套算法控制机器人军团!纯模拟环境强化学习,Figure学会像人一样走路

Figure公司通过强化学习,成功实现机器人的自然步态。利用高效物理模拟器,仅用几小时完成相当于多年训练的数据,训练出的策略无需额外调整即可「零样本」迁移至真实机器人。

来自主题: AI资讯
4903 点击    2025-04-14 17:14
过程奖励模型也可以测试时扩展?清华、上海AI Lab 23K数据让1.5B小模型逆袭GPT-4o

过程奖励模型也可以测试时扩展?清华、上海AI Lab 23K数据让1.5B小模型逆袭GPT-4o

过程奖励模型也可以测试时扩展?清华、上海AI Lab 23K数据让1.5B小模型逆袭GPT-4o

随着 OpenAI o1 和 DeepSeek R1 的爆火,大语言模型(LLM)的推理能力增强和测试时扩展(TTS)受到广泛关注。然而,在复杂推理问题中,如何精准评估模型每一步回答的质量,仍然是一个亟待解决的难题。传统的过程奖励模型(PRM)虽能验证推理步骤,但受限于标量评分机制,难以捕捉深层逻辑错误,且其判别式建模方式限制了测试时的拓展能力。

来自主题: AI技术研报
7116 点击    2025-04-14 14:39