听说,大家都在梭后训练?最佳指南来了
听说,大家都在梭后训练?最佳指南来了既然后训练这么重要,那么作为初学者,应该掌握哪些知识?大家不妨看看这篇博客《Post-training 101》,可以很好的入门 LLM 后训练相关知识。从对下一个 token 预测过渡到指令跟随; 监督微调(SFT) 基本原理,包括数据集构建与损失函数设计;
既然后训练这么重要,那么作为初学者,应该掌握哪些知识?大家不妨看看这篇博客《Post-training 101》,可以很好的入门 LLM 后训练相关知识。从对下一个 token 预测过渡到指令跟随; 监督微调(SFT) 基本原理,包括数据集构建与损失函数设计;
当大语言模型生成海量数据时,数据存储的难题也随之而来。对此,华盛顿大学(UW)SyFI实验室的研究者们提出了一个创新的解决方案:LLMc,即利用大型语言模型自身进行无损文本压缩的引擎。
游戏理解领域模型LynkSoul VLM v1,在游戏场景中表现显著超过了包括GPT-4o、Claude 4 Sonnet、Gemini 2.5 Flash等一众顶尖闭源模型。背后厂商逗逗AI,亦在现场吸引了不少关注的目光。
来扒一扒OpenAI算力支出的天价账单——据Epoch AI统计的数据显示,去年OpenAI在计算资源上支出了70亿美元。由于公司当时还没有大量的算力,所以这笔天价账单基本都是以向微软租用云算力的形式支付出去的,并不包括对数据中心的前期投入。
“我最近刚满 19 岁,从加拿大滑铁卢大学计算机学院退学(创业),致力于创建最高质量的编码数据引擎,为最强大的大模型提供支持。”不久前,出生于加拿大的亚裔女孩 Serena Ge 在自己的个人网站上写
全球首个真实世界具身多模态数据集,它来了! 刚刚,它石智航发布全球首个大规模真实世界具身VLTA(Vision-Language-Tactile-Action)多模态数据集World In Your Hands(WIYH)。
1.3千万亿,一个令人咂舌的数字。这就是谷歌每月处理的Tokens用量。据谷歌“宣传委员”Logan Kilpatrick透露,这一数据来自谷歌对旗下各平台的内部统计。那么在中文世界里,1.3千万亿Tokens约2.17千万亿汉字。换算成对话量,一本《红楼梦》的字数在70-80万左右,相当于一个月内所有人和谷歌AI聊了近30亿本《红楼梦》的内容。
本次新研究是迄今为止规模最大的大模型数据投毒调查。Anthropic 与英国人工智能安全研究所(UK AI Security Institute)和艾伦・图灵研究所(Alan Turing Institute)联合进行的一项研究彻底打破了这一传统观念:只需 250 份恶意文档就可能在大型语言模型中制造出「后门」漏洞,且这一结论与模型规模或训练数据量无关。
近期,北京大学、哈尔滨工业大学联合 PsiBot 灵初智能提出首个自我增强的灵巧操作数据生成框架 ——DexFlyWheel。该框架仅需单条演示即可启动任务,自动生成多样化的灵巧操作数据,旨在缓解灵巧手领域长期存在的数据稀缺问题。目前已被 NeurIPS 2025 接受为 Spotlight(入选率约 3.2%)
10分钟,答案浮出水面!陶哲轩用ChatGPT,发现一道30多年来一直认为悬而未决的问题,其实早被华人数学家给破解了。没有「神迹」,他这次只是用对了工具链:ChatGPT算出级数前几项、输入特定数据库、命中序列、找到文献、确认答案。