大模型不再是路痴!空间推理的答案是RAG:旅游规划、附近推荐全解锁
大模型不再是路痴!空间推理的答案是RAG:旅游规划、附近推荐全解锁Spatial-RAG结合了空间数据库和大型语言模型(LLM)的能力,能够处理复杂的空间推理问题。通过稀疏和密集检索相结合的方式,Spatial-RAG可以高效地从空间数据库中检索出满足用户查询的空间对象,并利用LLM的语义理解能力对这些对象进行排序和生成最终答案。
Spatial-RAG结合了空间数据库和大型语言模型(LLM)的能力,能够处理复杂的空间推理问题。通过稀疏和密集检索相结合的方式,Spatial-RAG可以高效地从空间数据库中检索出满足用户查询的空间对象,并利用LLM的语义理解能力对这些对象进行排序和生成最终答案。
你是否曾经用最先进的大语言模型处理企业文档,却发现它把财务报表中的“$1,234.56”读成了“123456”?或者在处理医疗记录时,将“0.5mg”误读为“5mg”?对于依赖数据准确性的运营和采购团队来说,这些问题不仅影响工作效率,更可能导致财务损失、法律风险甚至造成医疗事故。
作为一家公司,我们专注于三件事:预训练、微调和对齐。我们使用自有数据集进行预训练,这一点非常关键,而很多公司并不具备这样的能力。然后,我们用专家手工整理的数据进行微调。最有趣、最重要的部分在于对齐,这与简单地寻找“当前最优解”是截然不同的。
CB Insights 最近基于他们的数据调研和分析,绘制了覆盖 26 个细分领域的 170 余家 AI Agent 初创企业的市场格局图谱。同时也探讨了关于 AI Agent 的当前进展、面临的挑战及未来发展路径,以下为全文内容。
近日,上海财经大学统计与数据科学学院张立文教授与其领衔的金融大语言模型课题组(SUFE-AIFLM-Lab)联合数据科学和统计研究院、财跃星辰、滴水湖高级金融学院正式发布首款 DeepSeek-R1 类推理型人工智能金融大模型:Fin-R1,以仅 7B 的轻量化参数规模展现出卓越性能,全面超越参评的同规模模型并以 75 的平均得
X博士特别新增了“赛道之星”榜单。2025年2月数据新鲜出炉,X博士继续利用Xsignal数据交互平台的AI Holo(AI全息)数据库产品,更新国内AI市场2025年2月的最新发展动态。文章将一次性呈现2025年2月中国“TOP 50 AI 应用”、“TOP赛道”、“赛道之星”和“TOP20增长之星”四大榜单,为行业人士提供全面的市场洞察。
视频作为包含大量时空信息和语义的媒介,对于 AI 理解、模拟现实世界至关重要。视频生成作为生成式 AI 的一个重要方向,其性能目前主要通过增大基础模型的参数量和预训练数据实现提升,更大的模型是更好表现的基础,但同时也意味着更苛刻的计算资源需求。
摘要:蔡崇信将泡沫风险归因于三类企业行为。
在引发全球关注的同时,全球资本对中国科技资产的重新评估与 AI 投资的底层逻辑也悄然发生转变。尤其是在大模型领域,过去巨额投入却屡次推迟的ChatGPT5和本就步入下半场的国内六小龙,将直面 DeepSeek这匹黑马的强劲冲击。中国AI企业在DeepSeek突破了“算力禁运”之后,正面临高质量数据稀缺的挑战,尤其是高质量、低成本、多种类、多模态的数据,将成为未来 AI 产业发展的核心关键。
当前,传统生物制造方法在知识整合、数据处理和实验设计方面面临诸多挑战,限制了其在工业化应用中的效率和可扩展性。