
让模型预见数据分布变化,东京大学等提出时态域泛化全新框架
让模型预见数据分布变化,东京大学等提出时态域泛化全新框架在数据分布持续变化的动态环境中,如何进行连续模型泛化?
在数据分布持续变化的动态环境中,如何进行连续模型泛化?
论文提出了一种RAG任务分类法,将用户查询分为四个级别,并讨论了将外部数据集成到LLMs中的三种主要方式。从简单的事实检索到复杂的推理任务,每个级别都有其独特的难点和解决方案,需要不同的技术和方法来优化性能。
“赛博螺丝工”解放双手的时刻来了!
谁是在线购物领域最强大模型?也有评测基准了。
如何解决模型生成幻觉一直是人工智能(AI)领域的一个悬而未解的问题。为了测量语言模型的事实正确性,近期 OpenAI 发布并开源了一个名为 SimpleQA 的评测集。而我们也同样一直在关注模型事实正确性这一领域,目前该领域存在数据过时、评测不准和覆盖不全等问题。例如现在大家广泛使用的知识评测集还是 CommonSenseQA、CMMLU 和 C-Eval 等选择题形式的评测集。
在今天的Ignite开发者大会上,微软发布了两款专为其数据中心基础设施设计的新芯片:Azure Integrated HSM和Azure Boost DPU。
在AI领域数据和算力的军备竞赛中,AI从业者要么紧密跟随OpenAI等领先公司做进一步的应用开发,要么在Transformer机制日益显现局限之时探索新的路径。
在多样化的机器人数据集上预训练的大型策略有潜力改变机器人学习:与从头开始训练新策略相比,这种通用型机器人策略可以通过少量的领域内数据进行微调,同时具备广泛的泛化能力。
随着汽车进入“AI驱动”的时代,不止各大品牌新车拼智能,出行平台也在布局面向智驾产业的“自动驾驶工具链”。
如今,机器人学习最大的瓶颈是缺乏数据。与图片和文字相比,机器人的学习数据非常稀少。目前机器人学科的主流方向是通过扩大真实世界中的数据收集来尝试实现通用具身智能,但是和其他的基础模型,比如初版的 StableDiffusion 相比,即使是 pi 的数据都会少七八个数量级。