拜拜了GUI!中科院团队“LLM友好”计算机使用接口来了
拜拜了GUI!中科院团队“LLM友好”计算机使用接口来了大模型Agent帮你自动操作电脑,理想很丰满,现实却骨感。
大模型Agent帮你自动操作电脑,理想很丰满,现实却骨感。
自回归(AR)大语言模型逐 token 顺序解码的范式限制了推理效率;扩散 LLM(dLLM)以并行生成见长,但过去难以稳定跑赢自回归(AR)模型,尤其是在 KV Cache 复用、和 可变长度 支持上仍存挑战。
十月,《纽约时报》发表了题为《The A.I. Prompt That Could End the World》(《那个可能终结世界的 AI 提示词》)的文章。作者 Stephen Witt 采访了多位业内人士:有 AI 先驱,图灵奖获奖者 Yoshua Bengio;以越狱测试著称的 Leonard Tang;以及专门研究模型欺骗的 Marius Hobbhahn。
在一篇论文中,研究人员测试了 11 种 LLM 如何回应超过 11500 条寻求建议的查询,其中许多查询描述了不当行为或伤害。结果发现 LLM 附和用户行为的频率比人类高出 50%,即便用户的提问涉及操纵、欺骗或其他人际伤害等情境,模型仍倾向于给予肯定回应。
在开放研究领域里,苹果似乎一整个脱胎换骨,在纯粹的研究中经常会有一些出彩的工作。这次苹果发布的研究成果的确出人意料:他们用谷歌的 Nano-banana 模型做个了视觉编辑领域的 ImageNet。
2025 年 10 月 22 日,AI 基础设施公司 Fal.ai宣布完成新一轮 2.5 亿美元融资。据悉,凯鹏华盈与红杉资本领投此轮,公司估值超40亿美元。
如何让一个并不巨大的开源大模型,在面对需要多步检索与复杂逻辑整合的问题时,依然像 “冷静的研究员” 那样先拆解、再查证、后归纳,最后给出可核实的结论?
语言模型遭遇严重的位置偏见,即模型对不同上下⽂位置的敏感度不⼀致。模型倾向于过度关注输⼊序列中的特定位置,严重制约了它们在复杂推理、⻓⽂本理解以及模型评估等关键任务上的表现。
聚焦大型语言模型(LLMs)的安全漏洞,研究人员提出了全新的越狱攻击范式与防御策略,深入剖析了模型在生成过程中的注意力变化规律,为LLMs安全研究提供了重要参考。论文已被EMNLP2025接收
最近的 Meta 可谓大动作不断,一边疯狂裁人,一边又高强度产出论文。