Agent RL和智能体自我进化的关键一步: TaskCraft实现复杂智能体任务的自动生成
Agent RL和智能体自我进化的关键一步: TaskCraft实现复杂智能体任务的自动生成近年来,基于智能体的强化学习(Agent + RL)与智能体优化(Agent Optimization)在学术界引发了广泛关注。然而,实现具备工具调用能力的端到端智能体训练,首要瓶颈在于高质量任务数据的极度稀缺。
近年来,基于智能体的强化学习(Agent + RL)与智能体优化(Agent Optimization)在学术界引发了广泛关注。然而,实现具备工具调用能力的端到端智能体训练,首要瓶颈在于高质量任务数据的极度稀缺。
你肯定见过大模型在解题时「装模作样」地输出:「Hmm…」、「Wait, let me think」、「Therefore…」这些看似「人类化」的思考词。
大语言模型(LLM)以生成能力强而著称,但如何能让它「听话」,是一门很深的学问。 基于人类反馈的强化学习(RLHF)就是用来解决这个问题的,其中的奖励模型 (Reward Model, RM)扮演着重要的裁判作用,它专门负责给 LLM 生成的内容打分,告诉模型什么是好,什么是不好,可以保证大模型的「三观」正确。
没等来 DeepSeek 官方的 R2,却迎来了一个速度更快、性能不弱于 R1 的「野生」变体!这两天,一个名为「DeepSeek R1T2」的模型火了!这个模型的速度比 R1-0528 快 200%,比 R1 快 20%。除了速度上的显著优势,它在 GPQA Diamond(专家级推理能力问答基准)和 AIME 24(数学推理基准)上的表现均优于 R1,但未达到 R1-0528 的水平。
DeepSeek-R2,终于要来了?大模型竞技场秘密上线了一个叫steve的神秘模型,在对话中透露自己来自DeepSeek。不过,网友们并不满足于知道steve的厂商,开始讨论起了steve的具体身份。
当全球目光都聚焦在OpenAI、Anthropic、谷歌、Meta等明星AI公司时,真正靠大模型落地大规模盈利的,却是一家相对不太知名的公司——Palantir。
近日,一则消息在网络上引发热议。有媒体称,“DeepSeek就AI模型违规关联王一博与‘李爱庆腐败案’,作出道歉。”
第一难当。AI变革遇上IPO盛宴,港股掀起一波资本巨浪。
随着 AI Agent 技术的快速发展,业界许多企业开始在 Agent 方向进行深层次探索,而不仅仅是停留在“大模型 + 工具调用”的简单应用上。
最近「上下文工程」有多火?Andrej Karpathy 为其打 Call,Phil Schmid 介绍上下文工程的文章成为 Hacker News 榜首,还登上了知乎热搜榜。