
算力直降97%,GPT-3存储只用20MB?!这篇直接在1.58-bit下训练模型的新论文火了
算力直降97%,GPT-3存储只用20MB?!这篇直接在1.58-bit下训练模型的新论文火了好家伙!1750亿参数的GPT-3只需20MB存储空间了?! 基于1.58-bit训练,在不损失精度的情况下,大幅节省算力(↓97%)和存储(↓90%)。
好家伙!1750亿参数的GPT-3只需20MB存储空间了?! 基于1.58-bit训练,在不损失精度的情况下,大幅节省算力(↓97%)和存储(↓90%)。
本文介绍了一套针对于低比特量化的 scaling laws。
最近,LAION AI 的创始人 Christoph Schuhmann 分享了一个有趣的发现,他指出,文本向量模型似乎存在一个问题:即使句子词序被打乱,模型输出的向量与原句仍然高度相似。
近年来许多论文研究了基于扩散模型的定制化生成,即通过给定一张或几张某个概念的图片,通过定制化学习让模型记住这个概念,并能够生成这个概念的新视角、新场景图片。
超越ControlNet++,让文生图更可控的新框架来了!
Orr Zohar的指导老师Serena Yeung-Levy教授于2018年获得斯坦福大学博士学位,师从李飞飞和Arnold Milstein。2017年至2019年期间,Serena Yeung-Levy曾与Justin Johnson和李飞飞共同教授斯坦福大学卷积神经网络课程。
近年来,视觉-语言-动作模型(Vision-Language-Action, VLA)在诸多机器人任务上取得了显著的进展,但它们仍面临一些关键问题,例如由于仅依赖从成功的执行轨迹中进行行为克隆,导致对新任务的泛化能力较差。
控制无人机执行敏捷、高机动性的行为是一项颇具挑战的任务。传统的控制方法,比如 PID 控制器和模型预测控制(MPC),在灵活性和效果上往往有所局限。而近年来,强化学习(RL)在机器人控制领域展现出了巨大的潜力。通过直接将观测映射为动作,强化学习能够减少对系统动力学模型的依赖。
视频生成模型卷得热火朝天,配套的视频评价标准自然也不能落后。 现在,北京大学MMCAL团队开发了首个用于视频编辑质量评估的新指标——VE-Bench,相关代码与预训练权重均已开源。
DeepSeek新版模型正式发布,技术大佬们都转疯了! 延续便宜大碗特点的基础之上,DeepSeek V3发布即完全开源,直接用了53页论文把训练细节和盘托出的那种。