
苦研10年无果,千万经费打水漂!AI黑箱依然无解,谷歌撕破脸
苦研10年无果,千万经费打水漂!AI黑箱依然无解,谷歌撕破脸ChatGPT「舔狗化」事件背后,暴漏目前AI仍是「黑箱」。 一场关于「机制可解释性」的路线分歧,正撕裂AI研究最核心的价值共识。谷歌认怂,Anthropic死磕——AI还能被「看懂」吗?
ChatGPT「舔狗化」事件背后,暴漏目前AI仍是「黑箱」。 一场关于「机制可解释性」的路线分歧,正撕裂AI研究最核心的价值共识。谷歌认怂,Anthropic死磕——AI还能被「看懂」吗?
教AI学会使用工具,带图推理就能变得更强?!
强化学习(RL)+真实搜索引擎,可以有效提升大模型检索-推理能力。
该工作由南洋理工大学陶大程教授团队与武汉大学罗勇教授、杜博教授团队等合作完成。
近日,腾讯 PCG 社交线的研究团队针对这一问题,采用强化学习(RL)训练方法,通过分组相对策略优化(Group Relative Policy Optimization, GRPO)算法,结合基于奖励的课程采样策略(Reward-based Curriculum Sampling, RCS),将其创新性地应用在意图识别任务上,
最近,Google 推出了一个可以精准控制画面中光影的项目 —— LightLab。 它让用户能够从单张图像实现对光源的细粒度参数化控制, 可以改变可见光源的强度和颜色、环境光的强度,并且能够将虚拟光源插入场景中。
多模态大模型(Multimodal Large Language Models, MLLM)正迅速崛起,从只能理解单一模态,到如今可以同时理解和生成图像、文本、音频甚至视频等多种模态。正因如此,在AI竞赛进入“下半场”之际(由最近的OpenAI研究员姚顺雨所引发的共识观点),设计科学的评估机制俨然成为决定胜负的核心关键。
梁文锋亲自参与的DeepSeek最新论文,来了!
打破科技巨头算力垄断,个人开发者联手也能训练超大规模AI模型?
大型推理模型(如 OpenAI-o1、DeepSeek-R1)展现了强大的推理能力,但其静态知识限制了在复杂知识密集型任务及全面报告生成中的表现。为应对此挑战,深度研究智能体 WebThinker 赋予 LRM 在推理中自主搜索网络、导航网页及撰写报告的能力。