Embedding相似度不是万金油,电商、 新闻场景如何按时效性做rerank
Embedding相似度不是万金油,电商、 新闻场景如何按时效性做rerank同样是语义相似度结合时效性做rerank,指数衰减、高斯衰减、线性衰减怎么选? 假设你要在一个新闻应用中落地语义检索功能,让用户搜索雷军的投资版图盘点时,能自动关联顺为资本、小米战投等核心关联信息。
同样是语义相似度结合时效性做rerank,指数衰减、高斯衰减、线性衰减怎么选? 假设你要在一个新闻应用中落地语义检索功能,让用户搜索雷军的投资版图盘点时,能自动关联顺为资本、小米战投等核心关联信息。
这篇论文提出了一种颠覆性的协作模式,即通过强化学习训练一个“小模型”作为智能代理(Agent),让它自动学会如何写出完美的Prompt,一步步引导任何一个“大模型”完成复杂推理,实现了真正的“AI指挥AI”。
大语言模型(LLM)的「炼丹师」们,或许都曾面临一个共同的困扰:为不同任务、不同模型手动调整解码超参数(如 temperature 和 top-p)。这个过程不仅耗时耗力,而且一旦模型或任务发生变化,历史经验便瞬间失效,一切又得从头再来。
现代 LLM 通常依赖显式的文本生成过程(例如「思维链」)来进行「思考」训练。这种策略将推理任务推迟到训练后的阶段,未能充分挖掘预训练数据中的潜力。
大模型推理到底要不要「长篇大论」?过去一年,OpenAI o 系列、DeepSeek-R1、Qwen 等一系列推理模型,把「长链思维」玩到极致:答案更准了,但代价是推理链越来越长、Token 消耗爆炸、响应速度骤降。
该论文提出 FractalForensics,一种基于分形水印的主动深度伪造检测与定位方法。不同于以往的水印向量,为达成伪造定位的功能,论文提出的水印以矩阵形式出现。
当下的文本生成图像扩散模型取得了长足进展,为图像生成引入布局控制(Layout-to-Image, L2I)成为可能。
Transformer 语言模型具有单射性,隐藏状态可无损重构输入信息。
当用户向大语言模型提出一个简单问题,比如「单词 HiPPO 里有几个字母 P?」,它却正襟危坐,开始生成一段冗长的推理链:
传统智能体系统难以兼顾稳定性和学习能力,斯坦福等学者提出AgentFlow框架,通过模块化和实时强化学习,在推理中持续优化策略,并使小规模模型在多项任务中超越GPT-4o,为AI发展开辟新思路。