
CVPR 2025 Oral | DiffFNO:傅里叶神经算子助力扩散,开启任意尺度超分辨率新篇章
CVPR 2025 Oral | DiffFNO:傅里叶神经算子助力扩散,开启任意尺度超分辨率新篇章从单张低分辨率(LR)图像恢复出高分辨率(HR)图像 —— 即 “超分辨率”(SR)—— 已成为计算机视觉领域的重要挑战。
从单张低分辨率(LR)图像恢复出高分辨率(HR)图像 —— 即 “超分辨率”(SR)—— 已成为计算机视觉领域的重要挑战。
近年来,「思维链(Chain of Thought,CoT)」成为大模型推理的显学,但要让小模型也拥有长链推理能力却非易事。
AI也会偷偷努力了?Letta和UC伯克利的研究者提出「睡眠时计算」技术,能让LLM在空闲时间提前思考,大幅提升推理效率。
颠覆LLM预训练认知:预训练token数越多,模型越难调!CMU、斯坦福、哈佛、普林斯顿等四大名校提出灾难性过度训练。
超越YOLOv3、Faster-RCNN,首个在COCO2017 val set上突破30AP的纯多模态开源LLM来啦!
扩散模型(Diffusion Models, DMs)如今已成为文本生成图像的核心引擎。凭借惊艳的图像生成能力,它们正悄然改变着艺术创作、广告设计、乃至社交媒体内容的生产方式。
当前,多模态大模型驱动的图形用户界面(GUI)智能体在自动化手机、电脑操作方面展现出巨大潜力。然而,一些现有智能体更类似于「反应式行动者」(Reactive Actors),主要依赖隐式推理,面对需要复杂规划和错误恢复的任务时常常力不从心。
南加州大学团队只用9美元,就能在数学基准测试AIME 24上实现超过20%的推理性能提升,效果好得离谱!而其核心技术只需LoRA+强化学习,用极简路径实现超高性价比后训练。
LoRA 中到底存在多少参数冗余?这篇创新研究介绍了 LoRI 技术,它证明即使大幅减少 LoRA 的可训练参数,模型性能依然保持强劲。
Mona(Multi-cognitive Visual Adapter)是一种新型视觉适配器微调方法,旨在打破传统全参数微调(full fine-tuning)在视觉识别任务中的性能瓶颈。