
后训练时代如何延续Scaling Law?这是你该读的LLM后训练综述
后训练时代如何延续Scaling Law?这是你该读的LLM后训练综述现如今,微调和强化学习等后训练技术已经成为提升 LLM 能力的重要关键。
现如今,微调和强化学习等后训练技术已经成为提升 LLM 能力的重要关键。
其实……不用大段大段思考,推理模型也能有效推理!
来自英伟达和UIUC的华人团队提出一种高效训练方法,将LLM上下文长度从128K扩展至惊人的400万token SOTA纪录!基于Llama3.1-Instruct打造的UltraLong-8B模型,不仅在长上下文基准测试中表现卓越,还在标准任务中保持顶尖竞争力。
这就是为什么数据被称作"新石油"或"新黄金"——它极其珍贵,因为算法的一切认知都来源于输入的数据。
AI编程智能体的能力正在飞速增长,最新研究揭示了这一「新摩尔定律」,如果AI智能体的任务时长继续以每4个月翻倍的速度增长,到2027年它们可能完成长达167小时的月级任务!
训练成本高昂已经成为大模型和人工智能可持续发展的主要障碍之一。
随着大语言模型 (LLM) 技术的迅猛发展,基于 LLM 的智能智能体在客户服务、内容创作、数据分析甚至医疗辅助等多个行业领域得到广泛应用。
在以 transformer 模型为基础的大模型中,键值缓存虽然用以存代算的思想显著加速了推理速度,但在长上下文场景中成为了存储瓶颈。为此,本文的研究者提出了 MILLION,一种基于乘积量化的键值缓存压缩和推理加速设计。
在无数科幻电影中,增强现实(AR)通过在人们的眼前叠加动画、文字、图形等可视化信息,让人获得适时的、超越自身感知能力的信息。
AI能像人类一样不断从经验中学习、进化,而不仅仅依赖于人工标注的数据?测试时强化学习(TTRL)与记忆系统的结合正在开启这一全新可能!