Kapoor 在 2024 年 TechCrunch Disrupt 大会上启动了一场关于“新数据管道”的对话,讨论现代 AI 应用的背景,他的对话伙伴包括风险投资公司NEA的合伙人Vanessa Larco,以及数据集成平台Fivetran的首席执行官George Fraser。
Kapoor 在 2024 年 TechCrunch Disrupt 大会上启动了一场关于“新数据管道”的对话,讨论现代 AI 应用的背景,他的对话伙伴包括风险投资公司NEA的合伙人Vanessa Larco,以及数据集成平台Fivetran的首席执行官George Fraser。
来自中科大等单位的研究团队共同提出了用来有效评估多模态大模型预训练质量的评估指标 Modality Integration Rate(MIR),能够快速准确地评估多模态预训练的模态对齐程度。
利用语言模型调用工具,是实现通用目标智能体(general-purpose agents)的重要途径,对语言模型的工具调用能力提出了挑战。
解决真实GitHub Issue的基准测试,字节家的豆包MarsCode Agent悄悄登顶了。SWE-Bench,一个由普林斯顿大学提出的极具挑战性的Benchmark,近期受到工业界、学术界和创业团队的广泛关注。
斯坦福大学奥马尔(Omar)的DSPy研究团队最近更新了他们的项目文档,发了很多不错的案例,以及很多国际知名企业的DSPy用例,这些可能对您的项目有启发。
RAG,AI,模型训练,人工智能
在人工智能领域,大型预训练模型(如 GPT 和 LLaVA)的 “幻觉” 现象常被视为一个难以克服的挑战,尤其是在执行精确任务如图像分割时。
AI,LLM,模型训练,人工智能
AI界也有了自己的“奥斯卡”,哪家大模型角色扮演更入戏? 来自香港科技大学、腾讯、新加坡管理大学的团队提出新综述—— 不仅系统性地回顾了角色扮演语言模型的发展历程,还对每个阶段的关键进展进行了深入剖析,展示了这些进展如何推动模型逐步实现更复杂、更逼真的角色扮演。
Transformer自问世后就大放异彩,但有个小毛病一直没解决: 总爱把注意力放在不相关的内容上,也就是信噪比低。 现在微软亚研院、清华团队出手,提出全新改进版Differential Transformer,专治这个老毛病,引起热议。