
AI真的需要「像人类」那样思考吗?AlphaOne揭示属于大模型的「思考之道」
AI真的需要「像人类」那样思考吗?AlphaOne揭示属于大模型的「思考之道」在思维节奏这件事上,人类早已形成一种独特而复杂的模式。
在思维节奏这件事上,人类早已形成一种独特而复杂的模式。
现有的语言大模型(LLMs)在复杂指令下的理解和执行能力仍需提升。
在当今科技飞速发展的时代,机器人在各个领域的应用越来越广泛,从工业生产到日常生活,都能看到它们的身影。然而,现代机器人导航系统在多样化和复杂的室内环境中面临着诸多挑战,传统方法的局限性愈发明显。
大语言模型(LLM)能力提升引发对潜在风险的担忧,洞察其内部“思维过程”、识别危险信号成AI安全核心挑战。
在 3D 重建领域,无论是 NeRF 还是最新的 3D Gaussian Splatting(3DGS),在生成逼真新视角时仍面临一个核心难题:视角一旦偏离训练相机位置,图像就容易出现模糊、鬼影、几何错乱等伪影,严重影响实际应用。
大语言模型在数学证明中常出现推理漏洞,如跳步或依赖特殊值。斯坦福等高校团队提出IneqMath基准,将不等式证明拆解为可验证的子任务。结果显示,模型的推理正确率远低于答案正确率,暴露出其在数学推理上的缺陷。
只训练数学,却在物理化学生物战胜o1!强化学习提升模型推理能力再添例证。
不是更大模型,而是更强推理、更像人!AGI离落地,还有多远?OpenAI前研究主管表示,AGI所需突破已经实现!
关于大模型产生幻觉这个事,从2023年GPT火了以后,就一直是业界津津乐道的热门话题,但始终缺乏系统性的重磅研究来深入解释其根本机制。今天,伯克利的研究者们带来一个重要研究成果:让基于Transformer架构的语言模型产生幻觉的机制,恰恰也是让它们拥有超强泛化能力的关键。这就像是一枚硬币的两面,您想要哪一面,就得接受另一面的存在。
AI也会“闹自杀”了?