
合成数据>人工数据,绝对性能暴涨超10个点!仅需任务定义,高效微调大模型
合成数据>人工数据,绝对性能暴涨超10个点!仅需任务定义,高效微调大模型基础模型严重依赖大规模、高质量人工标注数据来学习适应新任务、领域。为解决这一难题,来自北京大学、MIT等机构的研究者们提出了一种名为「合成数据强化学习」(Synthetic Data RL)的通用框架。该框架仅需用户提供一个简单的任务定义,即可全自动地生成高质量合成数据。
基础模型严重依赖大规模、高质量人工标注数据来学习适应新任务、领域。为解决这一难题,来自北京大学、MIT等机构的研究者们提出了一种名为「合成数据强化学习」(Synthetic Data RL)的通用框架。该框架仅需用户提供一个简单的任务定义,即可全自动地生成高质量合成数据。
想象为《红楼梦》或《权力的游戏》创造一个AI的世界。书中的角色们变成AI,活在BookWorld当中。每天,他/她们醒来,思考,彼此对话、互动,建立感情和关系。
最近,强化学习领域出现了一个颠覆性发现:研究人员不再需要大量数学训练样本,仅仅让 AI 玩简单游戏,就能显著提升其数学推理能力。
最近,来自NUS、UT Austin等机构的研究人员创新性地提出了一种「拖拽式大语言模型」(DnD),它可以基于提示词快速生成模型参数,无需微调就能适应任务。不仅效率最高提升12000倍,而且具备出色的零样本泛化能力。
这是一篇来自伊利诺伊大学香槟分校联合Anthropic发布的重磅报告,系统性地梳理了"计算说服"这个新兴领域。您可能会好奇"计算说服"是什么?传统人际说服基于理论构建(如亚里士多德的修辞学 、西奥迪尼的说服六原则 )和人类参与的实验。
在思维节奏这件事上,人类早已形成一种独特而复杂的模式。
现有的语言大模型(LLMs)在复杂指令下的理解和执行能力仍需提升。
在当今科技飞速发展的时代,机器人在各个领域的应用越来越广泛,从工业生产到日常生活,都能看到它们的身影。然而,现代机器人导航系统在多样化和复杂的室内环境中面临着诸多挑战,传统方法的局限性愈发明显。
大语言模型(LLM)能力提升引发对潜在风险的担忧,洞察其内部“思维过程”、识别危险信号成AI安全核心挑战。
在 3D 重建领域,无论是 NeRF 还是最新的 3D Gaussian Splatting(3DGS),在生成逼真新视角时仍面临一个核心难题:视角一旦偏离训练相机位置,图像就容易出现模糊、鬼影、几何错乱等伪影,严重影响实际应用。