机器人终于能用明白洗碗机了|UC伯克利新研究
机器人终于能用明白洗碗机了|UC伯克利新研究在家庭厨房自主使用洗碗机,在办公室边移动边擦拭白板——这些人类习以为常的场景,对人形机器人来说,却是需要调动全身关节协同运作才能完成的“高难度挑战”。
在家庭厨房自主使用洗碗机,在办公室边移动边擦拭白板——这些人类习以为常的场景,对人形机器人来说,却是需要调动全身关节协同运作才能完成的“高难度挑战”。
来自 Player2 的研究员们提出了 Pixel2Play(P2P)模型,该模型以游戏画面和文本指令作为输入,直接输出对应的键盘与鼠标操作信号。在消费级显卡 RTX 5090 上,P2P 可以实现超过 20Hz 的端到端推理速度,从而能够真正像人类一样和游戏进行实时交互。P2P 作为通用游戏基座模型,在超过 40 款游戏、总计 8300 + 小时的游戏数据上进行了训练,
简单到难以置信!近日,Google Research一项新研究发现:想让大模型在不启用推理设置时更准确,只需要把问题复制粘贴再说一遍,就能把准确率从21.33%提升到97.33%!
香港大学(The University of Hong Kong)与 Adobe Research 联合发布 Self-E(Self-Evaluating Model):一种无需预训练教师蒸馏、从零开始训练的任意步数文生图框架。其目标非常直接:让同一个模型在极少步数也能生成语义清晰、结构稳定的图像,同时在 50 步等常规设置下保持顶级质量,并且随着步数增加呈现单调提升。
MemGovern团队 投稿 量子位 | 公众号 QbitAI 人类程序员碰到棘手bug通常会上网查询前辈经验。 当前AI虽然开始具备联网搜索能力,但仍不能很好地从网络经验中获取修复bug的能力。 让
近期,来自墨尔本大学和华中科技大学的研究者们发布了一篇深度综述,从 MLSys 的思维出发,用一套新颖的「时间 - 空间 - 结构」系统行为视角对 KV cache 优化方法进行了系统性梳理与深入分析,并将相关资源整理成了持续维护的 Awesome 资源库,方便研究者与从业人员快速定位与落地。
大语言模型(LLMs)的爆发式增长引领了人工智能领域的范式转移,取得了巨大的工程成功。然而,一个关键的悖论依然存在:尽管 LLMs 在实践中表现卓越,但其理论研究仍处于起步阶段,导致这些系统在很大程度上被视为难以捉摸的「黑盒」。
胡宇航(网名 “U 航”),毕业于美国哥伦比亚大学,博士学位,首形科技创始人。长期专注于机器人自主学习的研究工作。研究成果发表于《Nature Machine Intelligence》,《Science Robotics》等国际顶级期刊。
机器学习部署在边端设备的时候,模型总是存储在云端服务器上(5G 基站),而模型输入输出总是在边端设备上(例如用照相机拍摄照片然后识别其中的目标)。在这种场景下,传统有以下两种方案完成机器学习的推理:
感谢AI!