一张图生成任意场景3D模型,部分遮挡也不怕|IDEA x 光影焕像联合开源
一张图生成任意场景3D模型,部分遮挡也不怕|IDEA x 光影焕像联合开源IDEA研究院张磊团队与香港科技大学谭平团队联合推出SceneMaker框架,有望攻克这一问题。 它以视启未来的万物检测模型DINO-X与光影焕像的万物3D生成模型Triverse为基础,实现了从任意开放世界图像(室内/室外/合成图等)到带Mesh的3D场景的完整重建。
IDEA研究院张磊团队与香港科技大学谭平团队联合推出SceneMaker框架,有望攻克这一问题。 它以视启未来的万物检测模型DINO-X与光影焕像的万物3D生成模型Triverse为基础,实现了从任意开放世界图像(室内/室外/合成图等)到带Mesh的3D场景的完整重建。
今天,首个在国产芯片上完成全程训练的SOTA(最佳水平)多模态模型开源。这是智谱联合华为开源的图像生成模型GLM-Image。从数据到训练的全流程,该模型完全基于昇腾Atlas 800T A2设备和昇思MindSpore AI框架完成构建。
昨晚夜里快12点,AI视频公司PixVerse毫无预兆的发了一个项目。PixVerse R1,下一代实时世界生成模型。这玩意你看文字,可能不是很好理解,我直接放一个官方的demo视频,大家的感觉应该会强一些。
随着 AIGC(Artificial Intelligence Generated Content) 的爆发,我们已经习惯了像 Sora 或 Wan 这样的视频生成模型能够理解「一只宇航员在火星后空翻」这样天马行空的指令。然而,3D 人体动作生成(3D MoGen)领域却稍显滞后。
在检索增强生成中,扩大生成模型规模往往能提升准确率,但也会显著抬高推理成本与部署门槛。CMU 团队在固定提示模板、上下文组织方式与证据预算,并保持检索与解码设置不变的前提下,系统比较了生成模型规模与检索语料规模的联合效应,发现扩充检索语料能够稳定增强 RAG,并在多项开放域问答基准上让小中型模型在更大语料下达到甚至超过更大模型在较小语料下的表现,同时在更高语料规模处呈现清晰的边际收益递减。
让静态3D模型「动起来」一直是图形学界的难题:物理模拟太慢,生成模型又不讲「物理基本法」。近日,北京大学团队提出DragMesh,通过「语义-几何解耦」范式与双四元数VAE,成功将核心生成模块的算力消耗降低至SOTA模型的1/10,同时将运动轴预测误差降低了10倍。
大部分的高质量视频生成模型,都只能生成上限约15秒的视频。清晰度提高之后,生成的视频时长还会再一次缩短。
现有的AI视频生成模型虽然在短片上效果惊人,但面对一首完整的歌曲时往往束手无策——画面不连贯、人物换脸、甚至完全不理会歌词含义。
视频 - 音频联合生成的研究近期在开源与闭源社区都备受关注,其中,如何生成音视频对齐的内容是研究的重点。
上周我还在折腾各种图片、视频生成模型,这周又到了编程周。前天MiniMax丢出了个在编程界绝对有分量的模型:MiniMax-M2.1。然后发现就在刚才已经开源了: