
无需3D数据也能训练,港科&港中文联手华为推出3D自动驾驶场景生成模型
无需3D数据也能训练,港科&港中文联手华为推出3D自动驾驶场景生成模型无需采集3D数据,也能训练出高质量的3D自动驾驶场景生成模型。
无需采集3D数据,也能训练出高质量的3D自动驾驶场景生成模型。
就在刚刚,法国AI初创公司Mistral发布了自家首款代码生成模型Codestral。不仅支持32K长上下文窗口以及80多种编程语言,而且还用22B的参数量取得了与70B的Llama 3相近的性能。目前,已经开放API与IDE插件供用户使用。
3D生成也有自个儿的人工评测竞技场了~ 来自复旦大学和上海AI lab的研究人员搞了个3DGen-Arena,和大语言模型的Chatbot-Arena、GenAI-Arena等一脉相承,要让大伙儿对3D生成模型来一场公开、匿名的评测
近年来,定制化的人物生成技术在社区中引起了广泛关注。
ICLR 全称为国际学习表征会议(International Conference on Learning Representations),今年举办的是第十二届,于 5 月 7 日至 11 日在奥地利维也纳展览会议中心举办。
如今的生成式AI在人工智能领域迅猛发展,在计算机视觉中,图像和视频生成技术已日渐成熟,如Midjourney、Stable Video Diffusion [1]等模型广泛应用。然而,三维视觉领域的生成模型仍面临挑战。
传统的 3D 重建算法需要不同视角拍摄的多张图片作为输入从而重建出 3D 场景。近年来,有相当多的工作尝试从单张图片构建 3D 场景。然而,绝大多数此类工作都依赖生成式模型(如 Stable Diffusion),换句话说,此类工作仍然需要通过预训练的生成式模型推理场景中的 3D 信息。
自2021年诞生,CLIP已在计算机视觉识别系统和生成模型上得到了广泛的应用和巨大的成功。我们相信CLIP的创新和成功来自其高质量数据(WIT400M),而非模型或者损失函数本身。虽然3年来CLIP有大量的后续研究,但并未有研究通过对CLIP进行严格的消融实验来了解数据、模型和训练的关系。
刚刚,Adobe 正式宣布推出新的图像生成模型 Firefly Image 3,即日起在 Firefly Web 应用程序、Adobe Photoshop 和 Adobe InDesign 中提供测试版,并在「今年晚些时候」全面上市,旨在让创作者能够提高工作效率,生成更高质量、更详细的图像。
行业狂飙之际,版权利益争夺渐酣今年2月,美国OpenAI公司发布了首个视频生成模型“Sora”,再次掀起全球追进生成式人工智能的热潮。然而,据《纽约时报》近日报道,科技巨头OpenAI和谷歌被指涉嫌使用YouTube视频的转录文本来训练其人工智能模型,这一行为可能侵犯了YouTube创作者的版权。