AI资讯新闻榜单内容搜索-监督微调

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 监督微调
首次结合RL与SFT各自优势,动态引导模型实现推理⾼效训练

首次结合RL与SFT各自优势,动态引导模型实现推理⾼效训练

首次结合RL与SFT各自优势,动态引导模型实现推理⾼效训练

新一代大型推理模型,如 OpenAI-o3、DeepSeek-R1 和 Kimi-1.5,在复杂推理方面取得了显著进展。该方向核心是一种名为 ZERO-RL 的训练方法,即采用可验证奖励强化学习(RLVR)逐步提升大模型在强推理场景 (math, coding) 的 pass@1 能力。

来自主题: AI技术研报
5189 点击    2025-07-28 10:36
同时监督和强化的单阶段大模型微调,告别“先背书再刷题”,推理泛化双提升|中科院&美团等

同时监督和强化的单阶段大模型微调,告别“先背书再刷题”,推理泛化双提升|中科院&美团等

同时监督和强化的单阶段大模型微调,告别“先背书再刷题”,推理泛化双提升|中科院&美团等

通过单阶段监督微调与强化微调结合,让大模型在训练时能同时利用专家演示和自我探索试错,有效提升大模型推理性能。

来自主题: AI技术研报
6035 点击    2025-07-02 15:35
「推理革命」爆发100天:DeepSeek-R1复现研究全揭秘!

「推理革命」爆发100天:DeepSeek-R1复现研究全揭秘!

「推理革命」爆发100天:DeepSeek-R1复现研究全揭秘!

本文深入梳理了围绕DeepSeek-R1展开的多项复现研究,系统解析了监督微调(SFT)、强化学习(RL)以及奖励机制、数据构建等关键技术细节。

来自主题: AI技术研报
6049 点击    2025-05-06 10:53
类R1强化学习迁移到视觉定位!全开源Vision-R1将图文大模型性能提升50%

类R1强化学习迁移到视觉定位!全开源Vision-R1将图文大模型性能提升50%

类R1强化学习迁移到视觉定位!全开源Vision-R1将图文大模型性能提升50%

图文大模型通常采用「预训练 + 监督微调」的两阶段范式进行训练,以强化其指令跟随能力。受语言领域的启发,多模态偏好优化技术凭借其在数据效率和性能增益方面的优势,被广泛用于对齐人类偏好。目前,该技术主要依赖高质量的偏好数据标注和精准的奖励模型训练来提升模型表现。然而,这一方法不仅资源消耗巨大,训练过程仍然极具挑战。

来自主题: AI技术研报
9193 点击    2025-04-08 14:18
模型调优无需标注数据!将Llama 3.3 70B直接提升到GPT-4o水平

模型调优无需标注数据!将Llama 3.3 70B直接提升到GPT-4o水平

模型调优无需标注数据!将Llama 3.3 70B直接提升到GPT-4o水平

最近,AI 公司 Databricks 推出了一种新的调优方法 TAO,只需要输入数据,无需标注数据即可完成。更令人惊喜的是,TAO 在性能上甚至超过了基于标注数据的监督微调。

来自主题: AI技术研报
7195 点击    2025-03-30 14:33
全球首次!2B复现DeepSeek-R1「啊哈时刻」,UCLA等用纯RL实现多模态推理

全球首次!2B复现DeepSeek-R1「啊哈时刻」,UCLA等用纯RL实现多模态推理

全球首次!2B复现DeepSeek-R1「啊哈时刻」,UCLA等用纯RL实现多模态推理

由UCLA等机构共同组建的研究团队,全球首次在20亿参数非SFT模型上,成功实现了多模态推理的DeepSeek-R1「啊哈时刻」!就在刚刚,我们在未经监督微调的2B模型上,见证了基于DeepSeek-R1-Zero方法的视觉推理「啊哈时刻」!

来自主题: AI技术研报
6846 点击    2025-03-05 20:42
李飞飞团队50美元复刻DeepSeek?其实是基于通义监督微调,我们研究了论文

李飞飞团队50美元复刻DeepSeek?其实是基于通义监督微调,我们研究了论文

李飞飞团队50美元复刻DeepSeek?其实是基于通义监督微调,我们研究了论文

近日有媒体报道称,李飞飞等斯坦福大学和华盛顿大学的研究人员以不到50美元的云计算费用,成功训练出了一个名为s1的人工智能推理模型。

来自主题: AI资讯
6053 点击    2025-02-07 19:31