AI资讯新闻榜单内容搜索-编码器

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 编码器
RAE的终极形态?北大&阿里提出UniLIP: 将CLIP拓展到重建、生成和编辑

RAE的终极形态?北大&阿里提出UniLIP: 将CLIP拓展到重建、生成和编辑

RAE的终极形态?北大&阿里提出UniLIP: 将CLIP拓展到重建、生成和编辑

统一多模态模型要求视觉表征必须兼顾语义(理解)和细节(生成 / 编辑)。早期 VAE 因语义不足而理解受限。近期基于 CLIP 的统一编码器,面临理解与重建的权衡:直接量化 CLIP 特征会损害理解性能;而为冻结的 CLIP 训练解码器,又因特征细节缺失而无法精确重建。例如,RAE 使用冻结的 DINOv2 重建,PSNR 仅 19.23。

来自主题: AI技术研报
7435 点击    2025-11-03 09:50
天下苦VAE久矣:阿里高德提出像素空间生成模型训练范式, 彻底告别VAE依赖

天下苦VAE久矣:阿里高德提出像素空间生成模型训练范式, 彻底告别VAE依赖

天下苦VAE久矣:阿里高德提出像素空间生成模型训练范式, 彻底告别VAE依赖

近年来,基于扩散模型的图像生成技术发展迅猛,催生了Stable Diffusion、Midjourney等一系列强大的文生图应用。然而,当前主流的训练范式普遍依赖一个核心组件——变分自编码器(VAE),这也带来了长久以来困扰研究者们的几个问题:

来自主题: AI技术研报
5677 点击    2025-10-30 17:03
高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

高效训练新标杆!华人团队开源原生VLM-NEO,以少数据追平顶级模型

当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。

来自主题: AI技术研报
6936 点击    2025-10-30 10:55
无VAE扩散模型! 清华&可灵团队「撞车」谢赛宁团队「RAE」

无VAE扩散模型! 清华&可灵团队「撞车」谢赛宁团队「RAE」

无VAE扩散模型! 清华&可灵团队「撞车」谢赛宁团队「RAE」

长期以来,扩散模型的训练通常依赖由变分自编码器(VAE)构建的低维潜空间表示。然而,VAE 的潜空间表征能力有限,难以有效支撑感知理解等核心视觉任务,同时「VAE + Diffusion」的范式在训练

来自主题: AI技术研报
5640 点击    2025-10-23 15:10
LLaVA-OneVision-1.5全流程开源,8B模型预训练只需4天、1.6万美元

LLaVA-OneVision-1.5全流程开源,8B模型预训练只需4天、1.6万美元

LLaVA-OneVision-1.5全流程开源,8B模型预训练只需4天、1.6万美元

LLaVA 于 2023 年提出,通过低成本对齐高效连接开源视觉编码器与大语言模型,使「看图 — 理解 — 对话」的多模态能力在开放生态中得以普及,明显缩小了与顶级闭源模型的差距,标志着开源多模态范式的重要里程碑。

来自主题: AI技术研报
8661 点击    2025-10-15 12:12
谢赛宁新作:VAE退役,RAE当立

谢赛宁新作:VAE退役,RAE当立

谢赛宁新作:VAE退役,RAE当立

谢赛宁团队最新研究给出了答案——VAE的时代结束,RAE将接力前行。其中表征自编码器RAE(Representation Autoencoders)是一种用于扩散Transformer(DiT)训练的新型自动编码器,其核心设计是用预训练的表征编码器(如DINO、SigLIP、MAE 等)与训练后的轻量级解码器配对,从而替代传统扩散模型中依赖的VAE(变分自动编码器)。

来自主题: AI技术研报
7269 点击    2025-10-14 16:34
OpenVision 2:大道至简的生成式预训练视觉编码器

OpenVision 2:大道至简的生成式预训练视觉编码器

OpenVision 2:大道至简的生成式预训练视觉编码器

本文来自加州大学圣克鲁兹分校(UCSC)、苹果公司(Apple)与加州大学伯克利分校(UCB)的合作研究。第一作者刘彦青,本科毕业于浙江大学,现为UCSC博士生,研究方向包括多模态理解、视觉-语言预训

来自主题: AI技术研报
5518 点击    2025-09-16 09:37
通用LLM压缩算法,居然藏视频编码里!2.5bit实现4bit性能,硬件无缝支持

通用LLM压缩算法,居然藏视频编码里!2.5bit实现4bit性能,硬件无缝支持

通用LLM压缩算法,居然藏视频编码里!2.5bit实现4bit性能,硬件无缝支持

LLM.265研究发现,视频编码器本身就是一种高效的大模型张量编码器。原本用于播放8K视频的现成视频编解码硬件,其实压缩AI模型数据的效率也非常高,甚至超过了许多专门为AI开发的方案。该工作已被世界微架构大会MICRO-2025正式接收,相关成果将于今年10月在首尔进行展示与讨论。

来自主题: AI技术研报
7174 点击    2025-09-05 10:14
ICCV 2025 | 跨越视觉与语言边界,打开人机交互感知的新篇章:北大团队提出INP-CC模型重塑开放词汇HOI检测

ICCV 2025 | 跨越视觉与语言边界,打开人机交互感知的新篇章:北大团队提出INP-CC模型重塑开放词汇HOI检测

ICCV 2025 | 跨越视觉与语言边界,打开人机交互感知的新篇章:北大团队提出INP-CC模型重塑开放词汇HOI检测

目前的 HOI 检测方法普遍依赖视觉语言模型(VLM),但受限于图像编码器的表现,难以有效捕捉细粒度的区域级交互信息。本文介绍了一种全新的开集人类-物体交互(HOI)检测方法——交互感知提示与概念校准(INP-CC)。

来自主题: AI技术研报
6793 点击    2025-08-20 11:05
刚刚,小红书开源了首个多模态大模型dots.vlm1,性能直追SOTA!

刚刚,小红书开源了首个多模态大模型dots.vlm1,性能直追SOTA!

刚刚,小红书开源了首个多模态大模型dots.vlm1,性能直追SOTA!

擅长「种草」的小红书正加大技术自研力度,两个月内接连开源三款模型!最新开源的首个多模态大模型dots.vlm1,基于自研视觉编码器构建,实测看穿色盲图,破解数独,解高考数学题,一句话写李白诗风,视觉理解和推理能力都逼近Gemini 2.5 Pro闭源模型。

来自主题: AI资讯
7679 点击    2025-08-07 18:41