
浙大开源“最懂Excel的GPT”!首次将结构化数据作为独立模态训练,刷榜提升40百分点
浙大开源“最懂Excel的GPT”!首次将结构化数据作为独立模态训练,刷榜提升40百分点大模型理解复杂表格,能力再次飞升了! 不仅能在不规则表格中精准找到相关信息,还能直接进行计算。
大模型理解复杂表格,能力再次飞升了! 不仅能在不规则表格中精准找到相关信息,还能直接进行计算。
近日,来自微软的研究人员开源了使用全新方法训练的MoE大模型,不走寻常路,且编码和数学表现出色。
上海大学本科生研发的新框架能有效应对知识图谱补全中的灾难性遗忘和少样本学习难题,提升模型在动态环境和数据稀缺场景下的应用能力。这项研究不仅推动了领域发展,也为实际应用提供了宝贵参考。
大型语言模型(LLM)最近在各种数学benchmark上疯狂刷分,动辄90%以上的正确率,搞得好像要统治数学界一样。然而,Epoch AI看不下去了,联手60多位顶尖数学家,憋了个大招——FrontierMath,一个专治LLM各种不服的全新数学推理测试!结果惨不忍睹,LLM集体“翻车”,正确率竟然不到2%!
在Prompt工程领域,角色扮演提示是否能够有效提高大型语言模型(LLM)的性能一直是一个备受关注的话题。
“如果AI是个人,它会在双十一买什么?” 我就把这个问题,随手问了几个AI。 然而,就是这么简单的问题,让我发现了AI之间存在着一个“诡异”的现象: 十个AI,八个都选择给自己买电子产品。
一个5月份完成训练的大模型,无法对《黑神话·悟空》游戏内容相关问题给出准确回答。
大模型幻觉,究竟是怎么来的?谷歌、苹果等机构研究人员发现,大模型知道的远比表现的要多。它们能够在内部编码正确答案,却依旧输出了错误内容。
该文章的第一作者陈麒光,目前就读于哈工大赛尔实验室。他的主要研究方向包括大模型思维链、跨语言大模型等。 该研究主要提出了推理边界框架(Reasoning Boundary Framework, RBF),首次尝试量化并优化思维链推理能力。
周期性现象广泛存在,深刻影响着人类社会和自然科学。作为最重要的基本特性之一,许多规律都显式或隐式地包含周期性,例如天文学中的行星运动、气象学中的季节变化、生物学中的昼夜节律、经济学中的商业周期、物理学中的电磁波以及数学运算和逻辑推理等。因此,在许多任务和场景中,人们希望对周期进行建模,以便根据以往的经验进行推理。