
如何让大模型感知知识图谱知识?蚂蚁联合实验室:利用多词元并行预测给它“上课”
如何让大模型感知知识图谱知识?蚂蚁联合实验室:利用多词元并行预测给它“上课”如何让大模型感知知识图谱知识?
如何让大模型感知知识图谱知识?
最近,扩散模型在生成模型领域异军突起,凭借其独特的生成机制在图像生成方面大放异彩,尤其在处理高维复杂数据时优势明显。然而,尽管扩散模型在图像生成任务中表现优异,但在图像目标移除任务中仍然面临诸多挑战。现有方法在移除前景目标后,可能会留下残影或伪影,难以实现与背景的自然融合。
算力需求比AdamW直降48%,OpenAI技术人员提出的训练优化算法Muon,被月之暗面团队又推进了一步!
随着AI工具越来越普及,类似Deep Researh这样的工具越来越好用,科学研究成果呈现爆炸式增长。以arXiv为例,仅2024年10月就收到超过24,000篇论文提交。
OpenAI o1视觉能力还是最强,模型们普遍“过于自信”!
把扩散模型的生成能力与 MCTS 的自适应搜索能力相结合,会是什么结果?
在人工智能高速发展的今天,我们似乎迎来了一个"假设爆炸"的时代。大语言模型每天都在产生数以万计的研究假设,它们看似合理,却往往难以验证。这让我不禁想起了20世纪最具影响力的科学哲学家之一——卡尔·波普尔。
GitHub上一个开源项目彻底打破门槛:只需3块钱、2小时,普通人也能从零训练自己的语言模型!项目“MiniMind”上线即爆火,狂揽8.9k星标,技术圈直呼:“这才是AI民主化的未来!”
DeepSeek啥都开源了,就是没有开源训练代码和数据。现在,开源RL训练方法只需要用1/30的训练步骤就能赶上相同尺寸的DeepSeek-R1-Zero蒸馏Qwen。
不到10美元,3B模型就能复刻DeepSeek的顿悟时刻了?来自荷兰的开发者采用轻量级的RL算法Reinforce-Lite,把复刻成本降到了史上最低!同时,微软亚研院的一项工作,也受DeepSeek-R1启发,让7B模型涌现出了高级推理技能。