ICCV涌现自动驾驶新范式:统一世界模型VLA,用训练闭环迈向L4
ICCV涌现自动驾驶新范式:统一世界模型VLA,用训练闭环迈向L4智能汽车、自动驾驶、物理AI的竞速引擎,正在悄然收敛—— 至少核心头部玩家,已经在最近的ICCV 2025,展现出了共识。
智能汽车、自动驾驶、物理AI的竞速引擎,正在悄然收敛—— 至少核心头部玩家,已经在最近的ICCV 2025,展现出了共识。
LLM Agent 正以前所未有的速度发展,从网页浏览、软件开发到具身控制,其强大的自主能力令人瞩目。然而,繁荣的背后也带来了研究的「碎片化」和能力的「天花板」:多数 Agent 在可靠规划、长期记忆、海量工具管理和多智能体协调等方面仍显稚嫩,整个领域仿佛一片广袤却缺乏地图的丛林。
2025年前盛行的闭源+重资本范式正被DeepSeek-R1与月之暗面Kimi K2 Thinking改写,二者以数百万美元成本、开源权重,凭MoE与MuonClip等优化,在SWE-Bench与BrowseComp等基准追平或超越GPT-5,并以更低API价格与本地部署撬动市场预期,促使行业从砸钱堆料转向以架构创新与稳定训练为核心的高效路线。
在好莱坞,AI连动物演员的位置都抢走了!真实的动物被算法重建成更完美的数字替身。有人说这是技术的善意,能让动物不再受训练之苦;也有人说,这是一场「无声的驱逐」的革命。当连呼吸都能被算法生成,我们该怀念的,或许不是那些动物,而是它眼里那一点不完美的生命力。
还得是大学生会玩啊(doge)! 网上正高速冲浪中,结果意外发现:有男大竟找了个机器人队友?而且机器人还相当黏人(bushi~ 白天超市打工它要跟着,一看东西装好就立马乐颠颠帮忙拉小推车,上楼下楼忙个不停:
2024年,加州大学圣地亚哥分校「Hao AI Lab」提出了DistServe的解耦推理理念,短短一年多时间,迅速从实验室概念成长为行业标准,被NVIDIA、vLLM等主流大模型推理框架采用,预示着AI正迈向「模块化智能」的新时代。
现有的LLM智能体训练框架都是针对单智能体的,多智能体的“群体强化”仍是一个亟须解决的问题。为了解决这一领域的研究痛点,来自UCSD和英特尔的研究人员,提出了新的提出通用化多智能体强化学习框架——PettingLLMs。支持任意组合的多个LLM一起训练。
《Science》的一篇新文章指出,大模型存在一个先天难解的软肋:幻觉难以根除。AI厂商让大模型在不确定性情况下说「我不知道」,虽然有助于减少模型幻觉,但可能因此影响用户留存与活跃度,动摇商业根本。
加州大学河滨分校团队发现,AI组合推理表现不佳部分源于评测指标过于苛刻。他们提出新指标GroupMatch和Test-Time Matching算法,挖掘模型潜力,使GPT-4.1在Winoground测试中首次超越人类,0.2B参数的SigLIP-B16在MMVP-VLM基准测试上超越GPT-4.1并刷新最优结果。这表明模型的组合推理能力早已存在,只需合适方法在测试阶段解锁。
去年,谢赛宁(Saining Xie)团队发布了 Cambrian-1,一次对图像多模态模型的开放式探索。但团队没有按惯例继续推出 Cambrian-2、Cambrian-3,而是停下来思考:真正的多