推理速度10倍提升,蚂蚁集团开源业内首个高性能扩散语言模型推理框架dInfer
推理速度10倍提升,蚂蚁集团开源业内首个高性能扩散语言模型推理框架dInfer近日,蚂蚁集团正式开源业界首个高性能扩散语言模型(Diffusion Large Language Model,dLLM)推理框架 dInfer。
近日,蚂蚁集团正式开源业界首个高性能扩散语言模型(Diffusion Large Language Model,dLLM)推理框架 dInfer。
谢赛宁团队最新研究给出了答案——VAE的时代结束,RAE将接力前行。其中表征自编码器RAE(Representation Autoencoders)是一种用于扩散Transformer(DiT)训练的新型自动编码器,其核心设计是用预训练的表征编码器(如DINO、SigLIP、MAE 等)与训练后的轻量级解码器配对,从而替代传统扩散模型中依赖的VAE(变分自动编码器)。
AI传奇人物、前特斯拉AI总监Karpathy重磅推出全新开源项目「nanochat」,以不到8000行代码复现ChatGPT全流程,只需一台GPU、约4小时、成本仅百美元。该项目在GitHub上线不到12小时即获4.2k星标!
人类遗忘的难题解法,被GPT-5 Pro重新找出来了!这事儿聚焦于埃尔德什问题#339,这是著名数学家保罗・埃尔德什提出或转述的近千道问题之一,收录于erdosproblems.com网站。该网站记录了每道题目的当前状态,其中约三分之一已解决,大部分仍待解。
为什么大模型,在执行长时任务时容易翻车?这让一些专家,开始质疑大模型的推理能力,认为它们是否只是提供了「思考的幻觉」。近日,剑桥大学等机构的一项研究证明:问题不是出现在推理上,而是出在大模型的执行能力上。
大语言模型在RLVR训练中面临的“熵困境”,有解了!
当全球的目光还在聚焦基座模型的参数竞赛时,一场更为深刻的变革正在悄然发生——后训练(Post-Training)。
为此,北大、UC San Diego 和 BeingBeyond 联合提出一种新的方法——Being-VL 的视觉 BPE 路线。Being-VL 的出发点是把这一步后置:先在纯自监督、无 language condition 的设定下,把图像离散化并「分词」,再与文本在同一词表、同一序列中由同一 Transformer 统一建模,从源头缩短跨模态链路并保留视觉结构先验。
在中国科学院计算技术研究所入选NeurIPS 2025的新论文中,提出了SpaceServe的突破性架构,首次将LLM推理中的P/D分离扩展至多模态场景,通过EPD三阶解耦与「空分复用」,系统性地解决了MLLM推理中的行头阻塞难题。
说出概念,SAM 3 就明白你在说什么,并在所有出现的位置精确描绘出边界。 Meta 的「分割一切」再上新? 9 月 12 日,一篇匿名论文「SAM 3: SEGMENT ANYTHING WITH CONCEPTS」登陆 ICLR 2026,引发网友广泛关注。